
Journal of Symbolic Computation 45 (2010) 629–656

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Solving the conjugacy problem in Garside groups by
cyclic sliding
Volker Gebhardt a,1, Juan González-Meneses b
a School of Computing and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia
b Dept. Álgebra, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain

a r t i c l e i n f o

Article history:
Received 2 April 2009
Accepted 26 January 2010
Available online 2 February 2010

Keywords:
Garside groups
Conjugacy
Conjugacy problem
Cyclic sliding
Sliding circuits
Complexity analysis

a b s t r a c t

We present a solution to the conjugacy decision problem and the
conjugacy search problem in Garside groups, which is theoretically
simpler than the usual one, with no loss of efficiency. This is done
by replacing the well-known cycling and decycling operations by a
new one, called cyclic sliding, which appears to be a more natural
choice.
We give an analysis of the complexity of our algorithm in terms

of fundamental operations with simple elements, so our analysis is
valid for every Garside group.
This paper intends to be self-contained, not requiring any

previous knowledge of prior algorithms, and includes all the details
for the algorithm to be implemented on a computer.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

TheConjugacyDecisionProblem (CDP) for a groupG is the decision problemof determining, given
any two elements a, b ∈ G, whether a and b are conjugate in G. The Conjugacy Search Problem (CSP),
on the other hand, requires to compute for any two given conjugate elements a, b ∈ G a conjugating
element c such that c−1ac = b. (We will also write ac = b.)
In this paper we will describe a new algorithm to solve both problems in Garside groups (of finite

type). The simplicity of the algorithm will allow us to describe it completely in this introduction
in a ready-to-implement manner. The main difference from established algorithms is the use of an
operation called cyclic sliding, which is a special kind of conjugation introduced in Gebhardt and

E-mail addresses: v.gebhardt@uws.edu.au (V. Gebhardt), meneses@us.es (J. González-Meneses).
URL: http://www.personal.us.es/meneses (J. González-Meneses).

1 Tel.: +61 2 4736 0688; fax: +61 2 4736 0867.

0747-7171/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2010.01.013

http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:v.gebhardt@uws.edu.au
mailto:meneses@us.es
http://www.personal.us.es/meneses
http://www.personal.us.es/meneses
http://www.personal.us.es/meneses
http://www.personal.us.es/meneses
http://www.personal.us.es/meneses
http://www.personal.us.es/meneses
http://dx.doi.org/10.1016/j.jsc.2010.01.013

630 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

González-Meneses (in press). Cyclic sliding assumes the role played by cycling and decycling in
previous algorithms.
Cyclic sliding will be motivated and explained in Section 1.2, but it can be defined right now. One

just needs to recall the following notions in a Garside group G, which are well known to specialists.
Firstly,G admits a partial order4, and there is a special element∆, calledGarside element. Given x ∈ G,
inf(x) and sup(x) are the maximal and minimal integers, respectively, satisfying∆inf(x) 4 x 4 ∆sup(x).
Secondly, given a, b ∈ G, there is a unique greatest common divisor a ∧ b with respect to 4. Finally,
the elements in the set [1,∆] = {s ∈ G | 1 4 s 4 ∆}, called simple elements, generate G. We assume
this set to be finite (that is, G is of finite type). It is well known how to compute all the above data in
a Garside group G of finite type, as we shall see.
Using the above well-known notions, we can define the following:

Definition 1.1 (Gebhardt and González-Meneses, in press). Given x ∈ G, we define the preferred
prefix p(x) of x as the simple element

p(x) =
(
x∆− inf(x)

)
∧
(
x−1∆sup(x)

)
∧∆,

and we define the cyclic sliding s(x) of x as the conjugate of x by its preferred prefix, that is,

s(x) = xp(x) = p(x)−1x p(x).

This is enough to describe a simple algorithm to solve the conjugacy decision problem and the
conjugacy search problem in a Garside group of finite type. The algorithm we present now, however,
is by far not the best possible one. In Section 1.3 we will give a much better algorithm, which requires
someother notions besides the preferred prefix and the cyclic sliding. Nevertheless, the simple version
given here for illustration can be useful for theoretical purposes or for applying it to small examples.

Algorithm 0:
Solving the conjugacy problem in a Garside group G of finite type

Input: x, y ∈ G.
Output: - Whether x and y are conjugate.

- If x and y are conjugate, an element c such that xc = y.

(1) Set x̃ = x, c1 = 1 and T = ∅.
(2) While x̃ /∈ T , set T = T ∪ {̃x}, c1 = c1 · p(̃x) and x̃ = s(̃x).
(3) Set ỹ = y, c2 = 1 and T = ∅.
(4) While ỹ /∈ T , set T = T ∪ {̃y}, c2 = c2 · p(̃y) and ỹ = s(̃y).
(5) Set V = {̃x}, V ′ = {̃x} and c̃x = 1.
(6) While V ′ 6= ∅, do:
(a) Take v ∈ V ′.
(b) For every simple element s, do:
(i) If vs = ỹ, then:
(A) Set c̃y = cv · s.
(B) Return ‘x and y are conjugate by c1 · c̃y · c−12 ’.

(ii) If vs /∈ V , then:
(A) Apply iterated cyclic sliding to vs until the first repetition is encountered, sayw.
(B) Ifw = vs, then set cvs = cv · s, V = V ∪ {vs}, and V ′ = V ′ ∪ {vs}.

(c) Remove v from V ′.
(7) Return ‘x and y are not conjugate’.

The set V computed by the above algorithm, called the set of sliding circuits of x and denoted
SC(x), was introduced in Gebhardt and González-Meneses (in press). It is a finite invariant of the
conjugacy class xG of x, that is, it is a finite subset of xG and only depends on xG, not on x itself. This
set SC(x) consists of those conjugates of xwhich are stabilised by sk for some positive integer k and it
is analogous to the ultra summit set USS(x) introduced by Gebhardt (2005). One has SC(x) ⊆ USS(x),
and in general SC(x) is a proper subset of USS(x).

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 631

The first two lines of the algorithm compute an element x̃ ∈ SC(x), by applying iterated cyclic
sliding until the first repetition is reached (which is x̃). A conjugating element c1 from x to x̃ is also
computed. The following two lines compute ỹ ∈ SC(y) and a conjugating element c2 from y to ỹ in
the same way. Then, the algorithm starts to compute the whole set SC(x). If during the computation
it finds ỹ as an element of SC(x), the algorithm stops and returns a conjugating element from x to y. If
this does not occur, that is, if the algorithm computes the whole set SC(x)without finding ỹ in it, then
it returns the message ‘x and y are not conjugate’.
The use of cyclic sliding not only allows to develop a simpler algorithmic solution to the CDP/CSP,

but also is of theoretical interest; we refer to Gebhardt and González-Meneses (in press) for details. It
is shown there that the set of sliding circuits has all the good properties of the ultra summit set, but is
themore natural invariant inmanyways. In particular, the properties of the set of sliding circuits fully
extend to the case of elements of summit canonical length 1, which is not the case for ultra summit
sets. Another indication of the naturalness of the cyclic sliding operation is the fact that for super
summit elementswhich have a rigid conjugate, the (unique) minimal positive element yielding a rigid
conjugate is precisely the conjugating element obtained by iterated cyclic sliding.
The structure of this paper is as follows. In the introduction, we present our algorithm solving

the conjugacy problems in Garside groups in a ready-to-implement form. This presentation is kept
as concise as possible; explanations, motivations and the proof of correctness are postponed to later
sections. More precisely, in Section 1.1, we give a basic introduction to the theory of Garside groups;
specialists may skip this part. In Section 1.2 we briefly explain the new concepts from Gebhardt
and González-Meneses (in press) which are subsequently used for the detailed description of the
algorithm in Section 1.3.
The rest of the paper is devoted to the explanation and analysis of the algorithm. Section 2 contains

a summary of results from Gebhardt and González-Meneses (in press) which are required in our
discussion. In Section 3 the algorithm is explained and shown to be correct. Finally, the complexity of
the new algorithm is analysed in Section 4, where Section 4.1 discusses how the operations required
for our algorithm can be realised, only assuming knowledge of the lattice of simple elements.

1.1. Basic facts about Garside groups

Garside groups were defined by Dehornoy and Paris (1999). For a detailed introduction to these
groups, see (Dehornoy, 2002); a shorter introduction, containing all the details needed for this paper
can be found in Birman et al. (2007a) (Section 1.1 and the beginning of Section 1.2).
One of the possible definitions of a Garside group is the following. A group G is said to be a Garside

group with Garside structure (G, P,∆) if it admits a submonoid P satisfying P ∩ P−1 = {1}, called
the monoid of positive elements, and a special element∆ ∈ P called the Garside element, such that
the following properties hold:

(G1) The partial order 4 defined on G by a 4 b ⇔ a−1b ∈ P (which is invariant under left
multiplication by definition) is a lattice order. That is, for every a, b ∈ G there are a unique
least commonmultiple a∨ b and a unique greatest common divisor a∧ bwith respect to 4. (In
other words, there exists a unique element a∨ b such that a 4 a∨ b and b 4 a∨ b, and for any
c ∈ G the conditions a 4 c and b 4 c together imply a ∨ b 4 c. Similarly, there exists a unique
element a ∧ b, such that a ∧ b 4 a and a ∧ b 4 b, and for any c ∈ G the conditions c 4 a and
c 4 b together imply c 4 a ∧ b.)

(G2) The set [1,∆] = {a ∈ G | 1 4 a 4 ∆}, called the set of simple elements, generates G.
(G3) Conjugation by∆ preserves P (so it preserves the lattice order 4). That is,∆−1P∆ = P .
(G4) For all x ∈ P\{1}, one has:

‖x‖ = sup{k | ∃ a1, . . . , ak ∈ P\{1} such that x = a1 · · · ak} <∞.

Definition 1.2. A Garside structure (G, P,∆) is said to be of finite type if the set of simple elements
[1,∆] is finite. A group G is said to be a Garside group of finite type if it admits a Garside structure
of finite type.

632 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

Throughout this paper, let G be a Garside group of finite type with a fixed Garside structure
(G, P,∆) of finite type. We denote by τ the inner automorphism of G corresponding to conjugation
by∆.
Remarks.
(1) By definition, p ∈ P ⇔ 1 4 p. Given two positive elements a 4 b, one usually says that a is a

prefix of b. Hence the simple elements are the positive prefixes of∆.
(2) The number ‖x‖ defined above for each x ∈ P\{1}, defines a norm in P (setting ‖1‖ = 0). Note
that the existence of this norm implies that every element in P\{1} can be written as a product of
atoms, where an atom is an element a ∈ P that cannot be decomposed in P , that is, a = bc with
b, c ∈ P implies that either b = 1 or c = 1. In any decomposition of x as a product of ‖x‖ factors
in P\{1}, all of them are atoms. Notice that the set of atoms generates G and is finite.

(3) It is easy to see that τ induces a permutation of the atoms of G. As this permutation is of finite
order and the set of atoms generates G, some power∆e of∆ lies in the centre of G.
The main examples of Garside groups of finite type are Artin–Tits groups of spherical type. In

particular, braid groups are Garside groups. In the braid group Bn on n strands with the usual Garside
structure that we call the Artin Garside structure of Bn, one has the following:

• The atoms are the standard generators σ1, . . . , σn−1.
• The positive elements are the braids that can be written as a word which only contains positive
powers of the atoms.
• The simple elements are the positive braids in which any two strands cross at most once. One has
|[1,∆]| = n!, so this is a finite type Garside structure.
• The Garside element ∆ = σ1(σ2σ1)(σ3σ2σ1) · · · (σn−1 · · · σ1) is the positive braid in which any
two strands cross exactly once (also called the half twist).∆2 is central in Bn.

Note that the monoid P induces not only a partial order 4 which is invariant under left
multiplication, but also a partial order < which is invariant under right multiplication. The latter is
defined by a < b ⇔ ab−1 ∈ P . It follows from the properties of G that < is also a lattice order, that
P is the set of elements a such that a < 1, and that the simple elements are the positive suffixes of∆
(where we say that a positive element b is a suffix of a if a < b). We will denote by x∧� y (resp. x∨� y)
the greatest common divisor (resp. least common multiple) of x, y ∈ Gwith respect to <.
Directly from the definitions, we have the following Lemma.

Lemma 1.3. For any a, b ∈ G the following hold:
(1) a 4 b if and only if a−1 < b−1.
(3) (a ∧ b)−1 = a−1 ∨� b−1.
(5) (a ∨ b)−1 = a−1 ∧� b−1.

(2) a 4 b if and only if τ(a) 4 τ(b).
(4) τ(a ∧ b) = τ(a) ∧ τ(b).
(6) τ(a ∨ b) = τ(a) ∨ τ(b).

Proof. For Claim1 note that a 4 b if and only if there exists c ∈ P such that ac = b, that is, a−1 = cb−1,
which is in turn equivalent to a−1 < b−1. Claims 3 and 5 then follow from the definitions of the greatest
common divisor respectively least common multiple.
Claim 2 holds since c ∈ P is equivalent to τ(c) ∈ P by axiom (G3). Claims 4 and 6 then follow from

the definitions of the greatest common divisor respectively least common multiple. �
The following notions are well known to specialists in Garside groups:

Definition 1.4. Given a simple element s, the right complement of s is defined by ∂(s) = s−1∆, and
the left complement of s is ∂−1(s) = ∆ s−1.
Notice that the map ∂ : [1,∆] → [1,∆] is a bijection of the (finite) set [1,∆]. Notice also that

∂2(s) = ∆−1s∆ = τ(s).
Definition 1.5. Given two simple elements a and b, we say that the decomposition a·b is leftweighted
if ∂(a)∧ b = 1 or, equivalently, if ab∧∆ = a. We say that the decomposition a · b is right weighted
if a ∧� ∂−1(b) = 1 or, equivalently, if ab ∧� ∆ = b.
The process of bringing a product a · b of two simple elements a and b into left weighted form by

replacing it with the product (as) · (s−1b), where s = ∂(a)∧ b, is called a local left sliding or simply a
local sliding (Gebhardt and González-Meneses, in press). Local right sliding is defined analogously.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 633

Definition 1.6. Given x ∈ G, we say that a decomposition x = ∆px1 · · · xr , where p ∈ Z and r ≥ 0,
is the left normal form of x if xi ∈ [1,∆]\{1,∆} for i = 1, . . . , r and xixi+1 is a left weighted
decomposition for i = 1, . . . , r − 1. We say that a decomposition x = yr · · · y1∆p is the right normal
form of x if yi ∈ [1,∆]\{1,∆} for i = 1, . . . , r and yi+1yi is a right weighted decomposition for
i = 1, . . . , r − 1.

It is well known that left and right normal forms of elements in G exist and are unique.
(Proposition 4.3 recalls how to compute them based on local slidings.) Moreover, the numbers p and
r do not depend on the normal form (left or right) that we are considering.

Definition 1.7. Given x ∈ G, whose left normal form is ∆px1 · · · xr and whose right normal form is
y1 · · · yr∆p, we define the infimum, canonical length and supremum of x, respectively, by inf(x) = p,
`(x) = r and sup(x) = p+ r .

It is shown in ElRifai and Morton (1994) that inf(x) and sup(x) are precisely the maximal
and minimal integers, respectively, such that ∆inf(x) 4 x 4 ∆sup(x) (or, equivalently, ∆sup(x) <
x < ∆inf(x)). Moreover, if x = ∆px1 · · · xr is in left normal form as written, then x−1 =
∆−(p+r) ∂−2(p+r)+1(xr) ∂−2(p+r−1)+1(xr−1) · · · ∂−2(p+1)+1(x1) is in left normal form as written. An
analogous relation holds for the right normal forms of x and x−1. This implies in particular that
inf(x−1) = − sup(x), sup(x−1) = − inf(x) and `(x−1) = `(x). From Lemma 1.3 it is obvious that
inf(τ (x)) = inf(x), sup(τ (x)) = sup(x) and `(τ (x)) = `(x). Moreover, the factors in the left (resp.
right) normal formof τ(x) are precisely the images under τ of the factors in the left (resp. right) normal
form of x.
The first factor and the last factor in the left normal form respectively the right normal form are of

special importance.

Definition 1.8. Given x ∈ G, the (left) initial factor ι(x) of x is defined as ι(x) = x∆− inf(x) ∧ ∆

and the (left) final factor of x is ϕ(x) = (∆sup(x)−1 ∧ x)−1 x. Similarly, the right initial factor of x is
ι�(x) = ∆− inf(x)x ∧� ∆ and the right final factor of x is ϕ�(x) = x (∆sup(x)−1 ∧� x)−1.

We remark that if `(x) = r > 0, and ∆px1 · · · xr is the left normal form of x, then ι(x) = τ−p(x1)
and ϕ(x) = xr . This explains the names given to these simple elements. Notice also that if r = 0, that
is, if x = ∆p, then ι(x) = 1 and ϕ(x) = ∆. From the relation between the normal forms of x and x−1,
we see that ι(x−1) = ∂(ϕ(x)). Similarly, ι�(x−1) = ∂−1(ϕ�(x)).

Definition 1.9. Let xG denote the conjugacy class of x in G and define the summit infimum infs(x) =
max{inf(y) | y ∈ xG} and the summit supremum sups(x) = min{sup(y) | y ∈ xG}. The set
SSS(x) = {y ∈ xG | inf(y) = infs(x), sup(y) = sups(x)} is called the super summit set of x; the
elements of SSS(x) are called super summit elements. The canonical length of super summit elements
is called the summit canonical length `s(x). One obviously has `s(x) = sups(x)− infs(x).

It is well known that SSS(x) ⊂ xG is non-empty and finite (ElRifai and Morton, 1994) and it is
clear from the definition that SSS(x) only depends on the conjugacy class of x. By the above remark,
inf(y−1) = − sup(y) and sup(y−1) = − inf(y) for all y ∈ G, and thus y ∈ SSS(x) if and only if
y−1 ∈ SSS(x−1). Similarly, inf(τ (x)) = inf(x), sup(τ (x)) = sup(x) and `(τ (x)) = `(x), whence
y ∈ SSS(x) if and only if τ(y) ∈ SSS(τ (x)) = SSS(x).
We summarise the discussion in this section in the following Lemma.

Lemma 1.10 (ElRifai and Morton, 1994). For any x ∈ G one has the following:

(1) inf(x) = max{i ∈ Z |∆i 4 x} = max{i ∈ Z | x < ∆i}.
(2) sup(x) = min{i ∈ Z | x 4 ∆i} = min{i ∈ Z |∆i < x}.
(3) If x = ∆px1 · · · xr is in left normal form, then the left normal form of x−1 is

x−1 = ∆−(p+r) ∂−2(p+r)+1(xr) ∂−2(p+r−1)+1(xr−1) · · · ∂−2(p+1)+1(x1).

If x = xr · · · x1∆p is in right normal form, then the right normal form of x−1 is

x−1 = ∂2(p+1)−1(x1) ∂2(p+2)−1(x2) · · · ∂2(p+r)−1(xr) ∆−(p+r).

634 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

(4) inf(x−1) = − sup(x), sup(x−1) = − inf(x) and `(x−1) = `(x).
(5) ι(x−1) = ∂(ϕ(x)) and ι�(x−1) = ∂−1(ϕ�(x)).
(6) ι(τ (x)) = τ(ι(x)), ϕ(τ(x)) = τ(ϕ(x)), ι�(τ (x)) = τ(ι�(x)), ϕ�(τ (x)) = τ(ϕ�(x)).
(7) infs(x−1) = −sups(x), sups(x−1) = −infs(x) and `s(x−1) = `s(x).
(8) SSS(x−1) = {y−1 | y ∈ SSS(x)}.
(9) y ∈ SSS(x) if and only if τ(y) ∈ SSS(x).

1.2. Cyclic sliding

Before explaining our algorithm, we need to describe the underlying operation called cyclic sliding
introduced in Gebhardt andGonzález-Meneses (in press). The use of cyclic sliding (instead of thewell-
known cycling and decycling operations) is what distinguishes the new algorithm from previously
known ones. The cyclic sliding operation will be motivated and explained in more detail in the
following section. Herewe just give the technical definitions, so that they can be used in the algorithm.
Recall that G is a Garside group of finite type with a fixed finite type Garside structure (G, P,∆).

Definition 1.11. Given x ∈ G, the preferred prefix p(x) of x is the simple element

p(x) =
(
x∆− inf(x)

)
∧
(
x−1∆sup(x)

)
∧∆ = ι(x) ∧ ι(x−1) = ι(x) ∧ ∂(ϕ(x)),

and the preferred suffix p�(x) of x is the simple element

p�(x) =
(
∆− inf(x)x

)
∧
�
(
∆sup(x)x−1

)
∧
� ∆ = ι�(x) ∧� ι�(x−1) = ι�(x) ∧� ∂−1(ϕ�(x)).

Definition 1.12. Given x ∈ G, the cyclic left sliding s(x) of x is the conjugate of x by its preferred
prefix, that is,

s(x) = xp(x) = p(x)−1x p(x),

and the cyclic right sliding s�(x) of x is the conjugate of x by the inverse of its preferred suffix:

s�(x) = xp
�(x)−1

= p�(x) x p�(x)−1.

If there is no possible confusion, we will call s(x) the cyclic sliding, or just the sliding of x.

It will be convenient to display conjugations in a graph-theoretical style. In this way, we shall write
u

s
−→ v if us = v for some u, s, v ∈ G. Hence we have:

x
p(x)
−−−−→ s(x) and x

p�(x)
←−−−− s�(x).

Elements forwhich the preferred prefix (or the preferred suffix) is trivial behave particularly nicely
in may ways.

Definition 1.13. An element x ∈ G is called left rigid or just rigid if p(x) = 1. Similarly, x is called
right rigid if p�(x) = 1.

In Birman et al. (2007a), the concept of rigidity was introduced and some of the properties of rigid
elements were analysed. It is obvious from the definition that left (respectively right) rigid elements
are fixed points for left (respectively right) cyclic sliding. The converse clearly is not true.
The main idea of our algorithm is the following: Iterated application of cyclic sliding sends any

element x ∈ G to a finite subset of its conjugacy class xG. This subset only depends on xG and is, in
general, small. Hence, it can be used to solve the CDP and the CSP efficiently. This set is defined as
follows:

Definition 1.14. We say that y ∈ G belongs to a sliding circuit if sm(y) = y for some m ≥ 1. Given
x ∈ G, we define the set of sliding circuits of x, denoted by SC(x), as the set of all conjugates of x
which belong to a sliding circuit.

Lemma 1.15. The maps τ and s commute. In particular, one has y ∈ SC(x) if and only if y∆
k
= τ k(y) ∈

SC(x) for all k ∈ Z.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 635

Proof. By Lemmas 1.3 and 1.10, one has p(τ (y)) = τ(p(y)), which yields the claim. �

Our algorithm will compute not only the set SC(x), but also conjugating elements connecting the
elements of SC(x). Basically, it constructs a connecteddirected graph,whose vertices correspond to the
elements of SC(x) and whose arrows correspond to conjugating elements sending one given element
in SC(x) to another.

Definition 1.16. Given x ∈ G, the sliding circuits graph SCG(x) of x is the directed graphwhose set of
vertices is SC(x) and whose arrows correspond to conjugating elements as follows: There is an arrow
which starts at u ∈ SC(x), ends at v ∈ SC(x) and is labelled by s ∈ P \ {1} if and only if:

(1) us = v.
(2) s is an indecomposable conjugator, that is, s 6= 1 and there is no element t , such that 1 ≺ t ≺ s
and ut ∈ SC(x).

We remark that the label of each arrow is a simple element (see Corollary 2.11 or Corollary 3.3).
Finally, we need to define two operations that will be applied to the conjugating elements. They

are analogous to the ones defined in Gebhardt (2005), and we use the same names.

Definition 1.17. Given x, α ∈ G, we define the transport of α at x under cyclic sliding as

α(1) = p(x)−1 α p(xα).

That is, α(1) is the conjugating element that makes the following diagram commutative, in the sense
that the conjugating element along any closed path is trivial:

x

α

��

p(x) // s(x)

α(1)

��
xα

p(xα)
// s(xα)

Note that the horizontal rows in this diagram correspond to applications of cyclic sliding.
For an integer i > 1 we define recursively α(i) = (α(i−1))(1). Note that (α(i−1))(1) indicates the

transport of α(i−1) at si−1(x). We also define α(0) = α.

x

α=α(0)

��

p(x) // s(x)

α(1)

��

p(s(x)) // s2(x)

α(2)

��

··· // sk−1(x)

α(k−1)

��

p(sk−1(x)) // sk(x)

α(k)

��
xα

p(xα)
// s(xα)

p(s(xα))
// s2(xα) ··· // sk−1(xα)

p(sk−1(xα))
// sk(xα)

The above operation is a way to transport a conjugating element along a sliding path. However,
occasionally we will need to go backwards, in some sense, although the obtained element will not
necessarily be a pre-image under transport. In Section 3.3 we will define the pullback s(1) of a positive
element s at an element y = s(z) ∈ SC(x) via the properties of its transport at z and define recursively
s(i) = (s(i−1))(1) for any integer i > 1 and s(0) = s (Definition 3.14). The details are somewhat technical
and require some prior work, sowe postpone them at this stage. At themoment, we just need to know
how to compute pullbacks in a certain special case; this is the content of the following proposition
which will be shown in Section 3.3:

Proposition 3.19. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive such that ys is super summit.
Then the pullback of s at y, as given in Definition 3.14, is

s(1) =
(
p(z) s p�(ys)−1

)
∨ 1 .

636 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

Hence, s(1) = β ∨ 1, where β ∈ G is the element that makes the following diagram commutative,
in the sense that the conjugating element along any closed path is trivial:

z
p(z)
−−−−→ y

β

y ys
s�(ys) −−−−→

p�(ys)
ys

1.3. The algorithm

In this subsectionwewill describe in detail our algorithm to solve the CDP and the CSP in a Garside
group G. The only requirement needed to implement it, which we assume to be fulfilled for the given
Garside group G, is to know the structure of the lattices of simple elements, with respect to both 4
and <. More precisely, one should know the Garside element∆ and have:

(1) A list containing the atoms,A = {a1, . . . , aλ}.
(2) A function that, given a ∈ A and s ∈ [1,∆], determines whether a 4 s and, in that case, computes
the simple element a−1s.

(3) A function that, given a ∈ A and s ∈ [1,∆], determines whether s < a and, in that case, computes
the simple element s a−1.

In Section 4.1 we will see how, provided the above requirements are fulfilled, one can compute
right and left complements, gcds and lcms, normal forms, preferred prefixes and suffixes, cyclic
slidings, transports and pullbacks.
Thewhole algorithm is divided into three parts, called Algorithms 1, 2 and 3. Algorithm1 computes

one element x̃ in the set SC(x), starting from an arbitrary element x ∈ G. The algorithm also computes
a conjugating element from x to x̃. Algorithm 2 computes the arrows in the graph SCG(x)which start
at a given vertex; this is necessary for computing the entire set SC(x). Moreover, knowing all arrows of
the graph will allow us to compute a conjugating element for every pair of elements in SC(x). Finally,
Algorithm 3 solves the CDP and the CSP in G using Algorithms 1 and 2.
We remark that Algorithm 1 is a refinement of the algorithm in ElRifai and Morton (1994) to

compute an element in the so-called super summit set of x. Here we replace two kinds of conjugation,
called cycling and decycling, by a single kind of conjugation: cyclic sliding. This is one of the reasons
thatmake our algorithm simpler. Algorithm2 is amodification of the analogous one given in Gebhardt
(2005), applied to cyclic sliding instead of cycling. Algorithm 3 is not new, since it is implicitly or
explicitly described in ElRifai andMorton (1994), Franco and González-Meneses (2003) and Gebhardt
(2005) in the context of other invariant subsets of the conjugacy class, namely super summit sets,
super summit sets with minimal simple elements, respectively ultra summit sets. The set SC(x) is a
subset of all of these sets (Gebhardt and González-Meneses, in press).
We recommend that the reader not try to understand the algorithms at a first reading. Theywill be

clarified in the following sections, where each particular step of the algorithms will be explained in a
more humaneway. See Section 4.2 for remarks concerning efficient implementation of the algorithms.

Algorithm 1:
Computing one element in SC(x)

Input: x ∈ G.
Output: x̃ ∈ SC(x) and c ∈ G such that xc = x̃.

(1) Set x̃ = x, c = 1 and T = ∅.
(2) While x̃ /∈ T , set T = T ∪ {̃x}, c = c · p(̃x) and x̃ = s(̃x).
(3) Set y = s(̃x) and d = p(̃x).
(4) While y 6= x̃, set d = d · p(y) and y = s(y).
(5) Return x̃ and c = c d−1.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 637

Algorithm 2:
Computing the arrows in SCG(x) starting at a given vertex

Input: v ∈ SC(x).
Output: The setAv of arrows in the graph SCG(x) starting at v.

(1) Compute the minimal integer N > 0 such that sN(v) = v.
(2) List the atoms of G, say a1, . . . , aλ. SetAv = ∅ and Atoms = ∅.
(3) For t = 1, . . . , λ do:
(a) Set s = at .
(b) While `(vs) > `(v), set s = s ·

(
1 ∨ (vs)−1∆inf(v) ∨ vs∆− sup(v)

)
.

(c) If at 4 p(v), then compute the iterated N-pullbacks s, s(N), s(2N), . . . until the first repetition
is encountered, say s(rN), and set s = s(rN).

(d) Compute the iterated N-transports s, s(N), s(2N), . . . until the first repetition is encountered,
say s(jN). Let i < j be such that s(iN) = s(jN).

(e) If at 4 s(mN) for somemwith i ≤ m < j, then do:
(i) If ak 64 s(mN) for all k = 1, . . . , λ such that either ak ∈ Atoms or k > t , then set

Av = Av ∪ {s(mN)} and Atoms = Atoms ∪ {at}.
(4) ReturnAv .

Algorithm 3:
Solving the conjugacyproblems inG

Input: x, y ∈ G.
Output: - Whether x and y are conjugate.

- If x and y are conjugate, an element c such that xc = y.

(1) Use Algorithm 1 to compute x̃ ∈ SC(x) and ỹ ∈ SC(y), together with conjugating elements c1 and
c2 such that xc1 = x̃ and yc2 = ỹ.

(2) Set V = {̃x}, V ′ = {̃x} and c̃x = 1.
(3) While V ′ 6= ∅, do:
(a) Take v ∈ V ′.
(b) Use Algorithm 2 to computeAv .
(c) For every s ∈ Av , do:
(i) If vs = ỹ, then set c̃y = cv · s. Return ‘x and y are conjugate by c1 · c̃y · c−12 ’.
(ii) If vs /∈ V , then set cvs = cv · s, V = V ∪ {vs}, and V ′ = V ′ ∪ {vs}.

(d) Remove v from V ′.
(4) Return ‘x and y are not conjugate’.

2. Cyclic sliding and the set of sliding circuits

This section summarises some properties of the cyclic sliding operation, the transportmap, and the
set of sliding circuits, which we require for proving the correctness of the algorithm from Section 1.3
and for analysing its complexity. Most of these results were obtained in Gebhardt and González-
Meneses (in press) and we refer to there for further details.

Properties of cyclic sliding

Cyclic sliding does not increase the canonical length. As G is of finite type, this implies that iterated
cyclic sliding starting from any x ∈ G eventually reaches a period, that is, produces an element of
SC(x). Moreover, iterated cyclic sliding achieves the minimal canonical length in the conjugacy class,
that is, SC(x) ⊆ SSS(x). More precisely, one has the following.

Lemma 2.1 (Gebhardt and González-Meneses, in press, Lemma 1). For every x ∈ G, one has the inequal-
ities inf(s(x)) ≥ inf(x), sup(s(x)) ≤ sup(x), and `(s(x)) ≤ `(x). In particular, if x is a super summit
element then so is s(x).

638 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

Corollary 2.2 (Gebhardt and González-Meneses, in press, Corollary 1). For any element x ∈ G, iterated
application of cyclic sliding eventually reaches a period, that is, there are integers 0 ≤ i < j such that
si(x) = sj(x). In particular, one has sk(x) ∈ SC(x) and sj−i(sk(x)) = sk(x) for all k ≥ i.

Proposition 2.3 (Gebhardt and González-Meneses, in press, Corollary 2). For any x ∈ G, if `(x) is not
minimal in the conjugacy class of x, then `(x) > `(sm(x)) for some positive integerm < ‖∆‖. In particular,
one has SC(x) ⊆ SSS(x).

Properties of the transport map

Under certain (mild) assumptions, the transport map respects many aspects of the Garside
structure of G. In particular, transport at super summit elements preserves positive elements and
powers of∆, and it respects the partial order 4 as well as gcds with respect to 4. One has:

Proposition 2.4. Let x ∈ G and let α, β ∈ G such that x, xα, xβ ∈ SSS(x) and consider transports at x.
Then the following hold.

(1) If α is positive then α(1) is positive.
(2) If α is positive then p(x) 4 α p(xα).
(3) If α = ∆k for k ∈ Z then α(1) = ∆k.
(4) If α 4 β then α(1) 4 β(1).
(5) If α is simple then α(1) is simple.
(6) (α ∧ β)(1) = α(1) ∧ β(1).

Proof. Claim 1 follows from (Gebhardt and González-Meneses, in press, Lemma 5) and is equivalent
to Claim 2, as α(1) = p(x)−1αp(xα). Claims 3, 4, 5 and 6 are special cases of (Gebhardt and González-
Meneses, in press, Lemma 6, Corollary 4, Corollary 5, and Proposition 3). �

Applying iterated cyclic sliding to a conjugate ys of y ∈ SC(x) will eventually produce another
element of SC(x) by Corollary 2.2. The following Lemma makes this more precise: iterated transport
of s along the sliding circuit of y eventually becomes periodic and this happens exactly when SC(x)
has been reached.

Lemma 2.5 (Gebhardt and González-Meneses, in press, Lemma 8). Let x ∈ G, y ∈ SC(x) and s ∈ G such
that ys ∈ SSS(x). Let N be a positive integer such that sN(y) = y and for integers i ≥ 0 consider the
transports s(iN) at y. Then the following hold.

(1) There are integers i2 > i1 ≥ 0 such that s(i1N) = s(i2N).
(2) ys ∈ SC(x) if and only if there is a positive integer k such that s(kN) = s.

Convexity properties and connectedness of the sliding circuits graph

It is well known that for any x ∈ G, the set of elements conjugating x to an element in SSS(x)
is closed under ∧. This has become known as convexity and in particular implies the existence of a
minimal positive element conjugating x to an element in SSS(x).

Proposition 2.6. (Franco and González-Meneses, 2003, Proposition 4.12 or Gebhardt and González-
Meneses, in press, Proposition 6). Let x, α, β ∈ G. If xα, xβ ∈ SSS(x), then xα∧β ∈ SSS(x).

Corollary 2.7. (Lee and Lee, 2008, Theorem 2.4 or Gebhardt and González-Meneses, in press, Corollary 7).
Let x, α, β ∈ G. If xα, xβ ∈ SSS(x), then xα∨β ∈ SSS(x).

Corollary 2.8 (Gebhardt and González-Meneses, in press, Corollary 8). Let x ∈ G. There is a unique
positive element ρ(x) (possibly trivial) satisfying the following.

(1) xρ(x) ∈ SSS(x).
(2) ρ(x) 4 α for every positive α ∈ G satisfying xα ∈ SSS(x).

The analogous properties for SC(x)were shown inGebhardt andGonzález-Meneses (in press). They
in particular imply that SCG(x) is a finite and connected directed graph.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 639

Proposition 2.9 (Gebhardt and González-Meneses, in press, Proposition 7). Let x ∈ G. If xα, xβ ∈ SC(x)
for elements α, β ∈ G, then xα∧β ∈ SC(x).

Corollary 2.10 (Gebhardt and González-Meneses, in press, Corollary 9). Let x ∈ G. There is a unique
positive element c(x) (possibly trivial) satisfying the following.

(1) xc(x) ∈ SC(x).
(2) c(x) 4 α for every positive α ∈ G satisfying xα ∈ SC(x).

Corollary 2.11 (Gebhardt and González-Meneses, in press, Corollary 10). For any x ∈ G, the graph
SCG(x) is finite and connected.

We remark that in the situation of Proposition 2.9 it is not necessarily true that xα∨β ∈ SC(x).
As an example consider the braid x = σ2σ1σ2σ3σ1σ2 ∈ B4 and let α = σ1 and β = σ2, whence
α ∨ β = σ1σ2σ1. It is easy to check that s3(x) = x, s3(xα) = xα and s3(xβ) = xβ . However,
s3(xα∨β) 6= xα∨β but s4(xα∨β) = s(xα∨β), that is, xα∨β /∈ SC(x).

Cyclic right sliding and right transport

Recall that in a Garside group Gwith Garside structure (G, P,∆), apart from the prefix order4, one
also has the suffix order <, defined by a < b if and only if ab−1 ∈ P . With respect to the latter, one can
consider the notions of preferred suffix, cyclic right sliding and set of right sliding circuits (denoted
SC�(x)), which are analogous to those of preferred prefix, cyclic sliding and set of sliding circuits, but
refer to the partial order < instead of 4 (cf. Definitions 1.11, 1.12 and 1.14).
Consequently, one can also define a transport map for cyclic right sliding, as follows. We remark

that, when one considers these notions with respect to <, and tries to relate them to the analogous
notions with respect to 4, one must consider conjugating elements on the left, meaning that a (left)
conjugating element α relates x to αxα−1 = xα

−1
.

Definition 2.12. Given x, α ∈ G, we define the right transport of α at x under cyclic right sliding as
α(1)

�
= p�(xα

−1
) α p�(x)−1. That is, α(1)

�
is the conjugating element that makes the following diagram

commutative, in the sense that the conjugating element along any closed path is trivial:

x s�(x)
p�(x)oo

xα
−1

α

OO

s�(xα
−1
)

p�(xα
−1
)

oo

α(1)
�

OO

All results for cyclic (left) sliding and (left) transport hold in analogous form for cyclic right
sliding and right transport; the proofs can be translated in a straightforward way. Alternatively, one
can consider a different Garside structure. As shown in Gebhardt and González-Meneses (in press),
(G, P−1,∆−1) also is a Garside structure for G, called the reverse Garside structure, and cyclic right
sliding and right transport with respect to (G, P,∆) are just cyclic (left) sliding and (left) transport
with respect to (G, P−1,∆−1). We refer to (Gebhardt and González-Meneses, in press, Section 3.3.2)
for details. In particular, we have the following right versions of Lemma 2.1 and Proposition 2.4 (1).

Lemma 2.13. For x ∈ G, one has inf(s�(x)) ≥ inf(x), sup(s�(x)) ≤ sup(x), and `(s�(x)) ≤ `(x). In
particular, if x is a super summit element then so is s�(x).

Proposition 2.14. Let x ∈ G and letα ∈ Gbe positive such that x, xα−1 ∈ SSS(x). Then, the right transport
α(1)

�
of α at x is positive.

A relation between cyclic (left) sliding and cyclic right sliding is given by the following result.

Proposition 2.15 (Gebhardt and González-Meneses, in press, Proposition 5). Let x ∈ G. Then for any
z ∈ SSS(x) one has p�(s(z)) < p(z) and p�(z) 4 p(s�(z)).

640 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

3. Description of the algorithm

In this section we will explain the algorithms from Section 1.3 and prove their correctness. The
main idea of these algorithms, as for the previous solutions to the conjugacy problem given in ElRifai
and Morton (1994), Franco and González-Meneses (2003) and Gebhardt (2005), is the computation
of a finite subset of the conjugacy class, which is an invariant of the conjugacy class, together with
conjugating elements connecting each pair of elements of this subset. In our case, the finite set is SC(x),
the vertex set of the connected graph SCG(x), and the conjugating elements will be paths in SCG(x).

3.1. Algorithm 3

We start by explaining Algorithm 3 from Section 1.3. We remark that analogues of this algorithm,
which use other sets instead of SC(x), are already given in ElRifai and Morton (1994), Franco and
González-Meneses (2003) and Gebhardt (2005). We explain the version given in this paper which
uses the invariant SC(x).
It is clear from the definition that SC(x) is an invariant subset of the conjugacy class of x. Moreover,

we will see that Algorithm 1 computes, given x ∈ G, an element x̃ ∈ SC(x), that is, SC(x) is non-
empty. Hence, two elements x and y are conjugate if and only if SC(x) = SC(y) or, equivalently,
SC(x)∩SC(y) 6= ∅. Thus, knowing how to compute SC(x), starting from a given element x, is sufficient
to solve the conjugacy decision problem.
If we also want to solve the conjugacy search problem, that is, we want to find a conjugating

element form x to y in case they are conjugate, then we can do the following. Since SC(x) = SC(y),
we just need to find an element z ∈ SC(x), a conjugating element c from x to z, and a conjugating
element c2 from y to z. Then c c−12 conjugates x to y. In order to obtain these conjugating elements, we
proceed as follows.
Suppose that x, y ∈ G are conjugate. As we shall see, Algorithm 1 computes, given x ∈ G, an

element x̃ ∈ SC(x) and a conjugating element c1 from x to x̃. Applying the same algorithm to y, we
obtain an element ỹ ∈ SC(y) = SC(x) and a conjugating element c2 from y to ỹ. Hence, in order to
obtain a conjugating element from x to y, we just need to find a conjugating element from x̃ to ỹ. In
other words, we need to know how to relate, through a conjugation, any pair of elements of SC(x).
This is achieved thanks to the connected graph SCG(x), since the vertices of this graph correspond to
the elements in SC(x), and a path between two vertices corresponds to a conjugating element from
one vertex to the other.
Algorithm 3 computes a conjugating element from x̃ to any other element in SC(x), by computing

a maximal tree of the graph SCG(x). More precisely, the algorithm starts in step 2 by considering
V = V ′ = {̃x} and c̃x = 1. The set V contains the elements which we know belong to SC(x), so at
the beginning it only contains x̃. The set V ′ contains the elements of V that have not yet been used in
step 3 of the algorithm, so at the beginningV ′ = V . Finally, whenever a new element v is added to V
(and also to V ′), we compute an element cv , which is a conjugating element from x̃ to v. Of course, in
step 2 of the algorithm, the conjugating element from x̃ to x̃ ∈ V is c̃x = 1.
Now step 3 does the following: For a known element of SC(x)which has not been processed before,

that is, for some v ∈ V ′, it calls Algorithm 2 to compute the arrows of SCG(x) starting at v. For each
such arrow s, it computes the endpoint vs of the arrow. If vs is not inV , thismeans thatwe encountered
a new element of SC(x), so we add it to both V and V ′, and at the same time compute a conjugating
element from x̃ to vs: Since we know a conjugating element cv from x̃ to v and a conjugating element
s from v to vs, we can store cvs = cv · s as conjugating element from x̃ to vs. Notice that the procedure
checks whether vs = ỹ, since in this case we have already found a conjugating element c̃y from x̃ to
ỹ as desired. Concatenating it from the left with the conjugating element from x to x̃ and from the
right with the conjugating element from ỹ to y, this produces a conjugating element from x to ywhich
becomes the output of the algorithm. If ỹ is not encountered, we remove v fromV ′ at the end of step 3
in order to record the fact that the arrows starting at v have been processed.
Notice that the procedure in step 3 is repeated while V ′ 6= ∅. Since V ⊆ SC(x), where SC(x) is a

finite set, since every element of V is added to V ′ exactly once, and since the procedure removes one
element from V ′ each time it is executed, this means that at some point we will have V ′ = ∅ and

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 641

the procedure will stop. At this point, the arrows starting at every element of V have been processed
(exactly once). Moreover, one has V = SC(x): Otherwise, since the graph SCG(x) is connected by
Corollary 2.11, therewould exist some element v ∈ V and some elementw ∈ SC(x)\V such that there
is an arrow in SCG(x) from v to w. But since v ∈ V and V ′ = ∅, step 3 has been applied to v, which
means thatw has been added to the set V , a contradiction. Therefore, when the procedure stops, one
has V = SC(x). If ỹwas not found in V , this means that ỹ /∈ SC(x), whence x and y are not conjugate.
Therefore, Algorithm 3 solves the conjugacy decision problem and the conjugacy search problem

in Garside groups of finite type, provided that Algorithms 1 and 2 are correct.

3.2. Algorithm 1

Given x ∈ G, Algorithm 1 finds one element x̃ ∈ SC(x) and a conjugating element c such that
xc = x̃. This is achieved by iterated applications of cyclic sliding to x. By Corollary 2.2, there must exist
two positive integers 0 ≤ i < j such that si(x) = sj(x), that is, si(x) ∈ SC(x). Algorithm 1 computes
this element si(x), where i is minimal. This is done by storing all the elements {sm(x) | m ≥ 0}, the
trajectory of xunder cyclic sliding, in a set calledT . Initially, one hasT = ∅ and x̃ = x. At the beginning
of the kth iteration of the loop in step 2, one has T = {s0(x), s1(x), . . . , sk−2(x)} and x̃ = sk−1(x). If
x̃ /∈ T , then x̃ is added to T and cyclic sliding is applied to x̃ before the next iteration of the loop.
Otherwise, a repetition (the first one) has been found and the loop terminates.
Moreover, c is at every time a conjugating element from x to x̃: At the beginning of the first iteration

of the loop in step 2, c = 1 is a conjugating element from x to x̃ = x. In each iteration of the loop,
the element c , which is a conjugating element from x to x̃, is multiplied on the right by p(̃x), yielding
a conjugating element from x to s(̃x), and x̃ is replaced by s(̃x).
Therefore, when the loop of step 2 stops, x̃ = si(x) ∈ SC(x) (with iminimal) and c is a conjugating

element from x to x̃, as desired. But notice that the conjugating element c is unnecessarily long, as
it contains, as a suffix, the product of all conjugating elements along the sliding circuit containing x̃.
Steps 3 and 4 remove this suffix from c.
Step 3 initialises y = s(̃x) and d = p(̃x). The loop in step 4 checks whether y = x̃, otherwise applies

cyclic siding to y and multiplies d by the corresponding conjugating element, p(y), in such a way that
when the loop terminates, the element d equals the product of all conjugating elements along the
sliding circuit containing x̃. The algorithm then returns x̃ ∈ SC(x) and cd−1 as the conjugating element
from x to x̃.

3.3. Algorithm 2

Algorithm 2 is the most involved among all the procedures in this paper. It takes an element
v ∈ SC(x), that is, a vertex of the graph SCG(x), and computes the arrows of SCG(x) starting at v.
In other words, Algorithm 2 computes the indecomposable conjugators from v to other elements of
SC(x). To show the correctness of each step of the algorithm, we first need to prove some theoretical
results.
Recall the definition of ρ(y) for y ∈ G in Corollary 2.8 and the definition of c(y) for y ∈ G in

Corollary 2.10; the existence of these elements is crucial for computing the sliding circuits graph of
an element x ∈ G.

Corollary 3.1. Let x ∈ G. Given y ∈ SSS(x) and s ∈ G, define ρs = ρs(y) = s ·ρ(ys). Then ρs is the unique
4-minimal element satisfying s 4 ρs and yρs ∈ SSS(x). Moreover, ρs(y) 4 ∆sup(s).

Proof. The first claim follows directly from Proposition 2.6 and Corollary 2.8. The second claim holds
since s 4 ∆sup(s) and y∆

sup(s)
∈ SSS(x) by Lemma 1.10. �

Corollary 3.2. Let x ∈ G. Given y ∈ SC(x) and s ∈ G, define cs = cs(y) = s · c(ys). Then cs is the unique
4-minimal element satisfying s 4 cs and ycs ∈ SC(x). Moreover, cs(y) 4 ∆sup(s).

Proof. The first claim follows directly from Proposition 2.9 and Corollary 2.10. The second claim holds
since s 4 ∆sup(s) and y∆

sup(s)
∈ SC(x) by Lemma 1.15. �

642 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

Corollary 3.3. Let x ∈ G and let y ∈ SC(x) be a vertex of SCG(x). Then the following hold.
(1) The label of each arrow in SCG(x) is a simple element.
(2) The number of arrows in SCG(x) starting at y is bounded by the number of atoms of G.

Proof. Let s be an arrow starting at y. Since y∆ ∈ SC(x) by Lemma 1.15, we have ys∧∆ ∈ SC(x) by
Proposition 2.9. As arrows are indecomposable by definition, this implies s = s ∧∆ proving Claim 1.
For Claim2note that for any arrow s starting at y and any atom a 4 swehave ca(y) = s by Corollary 3.2
and the indecomposability of s. �

In order to find the arrows starting at y it is hence sufficient to consider the set of simple elements
{ca(y) | a is an atom of G}. Let us then see how to compute cs(y) given y ∈ SC(x) and s ∈ G.
By Lemma 2.5, the element cs we are looking for is a fixed point under some power of transport

along the sliding circuit containing y, andwe knowby Proposition 2.4 (4) that transport of conjugating
elements between super summit elements respects the partial order 4. The basic idea is to apply
iterated transport to a suitable element ps, which is derived from s and satisfies s 4 ps 4 cs, until that
fixed point is reached. All we need to do is to ensure that yps is super summit (so that 4 is respected)
and that s 4 p(kN)s for a sufficiently large multiple kN of the length N of the sliding circuit containing
y (so that we can be sure that we obtain the ‘‘right’’ fixed point, that is, one which has s as a prefix).
The first step in the computation of ps is to find the 4-minimal element ρs satisfying s 4 ρs and

yρs ∈ SSS(x) (cf. Corollary 3.1); this is due to Franco and González-Meneses (2003). Note that ρs 4 cs
since SC(x) ⊆ SSS(x). By Corollary 3.1, we have ρs = s · ρ(ys), so we just need to be able to compute
ρ(ys). This is achieved by the following result.

Proposition 3.4. For x ∈ G, the following algorithm computes ρ(x) as in Corollary 2.8.
(1) Set ρ = 1.
(2) While inf(xρ) < infs(x) or sup(xρ) > sups(x) do:
(a) Set ρ = ρ · (1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x)).

(3) Return ρ(x) = ρ .

If x = ys with y ∈ SSS(x), then the algorithm terminates after at most `(s)·‖∆‖ passes through the
loop.

Proof. Since some power ∆e of ∆ is central in G, we can choose a positive element α such that
xρα ∈ SSS(x). Then, by Lemma 1.10, (xρα)−1 ∈ SSS(x−1) and we have sup((xρα)−1) = −infs(x)
and sup(xρα) = sups(x). Thus xρ 4 xρα = αxρα 4 α∆sups(x), whence xρ∆−sups(x) 4 α and, similarly,
(xρ)−1∆infs(x) 4 α. As 1 4 α, the above implies 1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x) 4 α. Moreover,
1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x) = 1 if and only if sup(xρ) ≤ sups(x) and inf(xρ) = − sup((xρ)−1) ≥
infs(x), that is, if and only if xρ ∈ SSS(x).
Hence, at any stage of the above algorithm, the element ρ satisfies ρ 4 c for every positive element

c ∈ G such that xc ∈ SSS(x). In particular, ‖ρ‖ is bounded. As ‖ρ‖ is strictly increasing at every step of
the algorithm, the algorithm terminates and outputsρ(x) as claimed. Finally, if x = yswith y ∈ SSS(x),
then ρ(x) 4 s−1∆sup(s) 4 ∆`(s), whence the algorithm terminates after at most `(s)·‖∆‖ steps. �

Corollary 3.5. Steps 3(a) and 3(b) in Algorithm 2 compute the element ρat . The body of the while loop is
executed at most ‖∆‖ times.

Proof. Note that in steps 3(a) and 3(b) of Algorithm 2 we have v ∈ SC(x) ⊆ SSS(x), that is,
`(v) = sups(x) − infs(x), sup(vs) ≥ sups(x), and inf(vs) ≤ infs(x). In particular, `(vs) > `(v) if
and only if inf(vs) < infs(x) or sup(vs) > sups(x). Hence, by Proposition 3.4, steps 3(a) and 3(b) in
Algorithm 2 compute exactly at ·ρ(vat) = ρat . Since `(at) = 1, the algorithm terminates after at most
‖∆‖ passes through the while loop. �

As 1 ∨ (xρ)−1∆infs(x) ∨ xρ∆−sups(x) =
(
1 ∨ (x−1)ρ∆−sups(x

−1)
)
∨

(
1 ∨ xρ∆−sups(x)

)
, the

computation in step 2(a) of the algorithm in Proposition 3.4 can be performed efficiently using the
following result.

Proposition 3.6. If x ∈ G such that sup(x) = q+ r with 0 ≤ r ≤ `(x), then 1 ∨ x∆−q is the product of
the leftmost r factors of the right normal form of x.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 643

Proof. By Lemma 1.3, we have 1 ∨ x∆−q = (1 ∧� ∆qx−1)−1 =
(
(x ∧� ∆q)x−1

)−1
= x(x ∧� ∆q)−1. As

x ∧� ∆q contains all but the leftmost r factors of the right normal form of x, the claim follows. �

Next we consider the sequence of iterated transports along the sliding circuit which contains the
element y. This sequence will eventually become periodic; we are interested in the periodic part.

Definition 3.7. Let x ∈ G, y ∈ SC(x) and u ∈ G such that yu ∈ SSS(x) and let N be the length of
the sliding circuit containing y, that is, let N be the smallest positive integer such that sN(y) = y. For
integers i ≥ 0 consider the transports u(iN) at y. By Lemma 2.5, there are integers i2 > i1 ≥ 0 such
that u(i1N) = u(i2N). Let i1 and i2 be minimal subject to this condition and define l(u) = i2 − i1 and
F(u) = {u(iN) | i1 ≤ i < i2}.

Lemma 3.8. In the situation of Definition 3.7, the following hold.
(1) For all k ≥ i1, one has u((k+l(u))N) = u(kN) and l(u) is the minimal positive integer satisfying this
condition.
In particular, for all v ∈ F(u) and all i ∈ N one has v(il(u)N) = v, whence yv ∈ SC(x).

(2) 1 ∈ F(u) if and only if F(u) = {1}.
(3) yu ∈ SC(x) if and only if u ∈ F(u).
(4) F(u) = {u(iN) | i ∈ N and yu

(iN)
∈ SC(x)}.

Proof. Claim 1 follows by induction on k and Lemma 2.5. For Claim 2, assume 1 ∈ F(u) and choose
k minimal such that u(kN) = 1. Then, u(k

′N)
= 1 for all k′ ≥ k, that is, i1 = k and i2 − i1 = 1. In

particular, F(u) = {1}. The converse is trivial, so Claim 2 is shown. Claim 3 follows with Lemma 2.5.
Claim 4 follows from Claim 1 and Lemma 2.5 together with the minimality of i1. �

In otherwords, the periodic part F(u) of the sequence of iterated transports contains those iterated
transports u(iN) of u along the sliding circuit of y, which are fixed by repeated transport along the
sliding circuit; these iterated transports u(iN) are precisely those satisfying yu

(iN)
∈ SC(x).

Under certain conditions, we can use the set F(u) to draw conclusions about the element cs
(cf. Corollary 3.2) we are interested in; the following two lemmata make this statement precise.

Lemma 3.9. Let x ∈ G, y ∈ SC(x), s ∈ G and denote cs = cs(y). Let N be the length of the sliding circuit
containing y, that is, let N be the smallest positive integer such that sN(y) = y. If cs 4 c

(iN)
s for some i > 0

then c(iN)s = cs.

Proof. First notice that cs ∈ F(cs) by its definition (cf. Corollary 3.2) and Lemma 3.8. Now assume that
c(iN)s = csγ with a positive element γ . By induction, csγ 4 c

(kiN)
s for all k ≥ 1 by Proposition 2.4 (4).

Again using Lemma 3.8, we have cs 4 csγ 4 c
(l(cs)iN)
s = cs, that is, γ = 1. �

Lemma 3.10. Let x ∈ G, y ∈ SC(x), s ∈ P and denote cs = cs(y). Assume that u is a positive element
satisfying u 4 cs and yu ∈ SSS(y) and assume further that F = F(u) 6= {1}.

(1) If there exists v ∈ F such that s 4 v then cs = v.
(2) If s 64 v for all v ∈ F , then cs is not an indecomposable conjugator starting at y.

Proof. First note that by Proposition 2.4 (4), we have u(i) 4 c(i)s for all i > 0.
Assume first that there exists an element v ∈ F such that s 4 v. We have yv ∈ SC(x) by Lemma 3.8.

The minimality of cs (Corollary 3.2) then implies cs 4 v. Let N be the smallest positive integer such
that sN(y) = y. Now v = u(iN) for some i, whence cs 4 v = u(iN) 4 c

(iN)
s . Lemma 3.9 then yields v = cs

and Claim 1 is shown.
Now assume that s 64 v for all v ∈ F and let i be a multiple of l(cs) sufficiently large so

that v = u(iN) ∈ F . Since 1 /∈ F , we have v 6= 1 and yv ∈ SC(x) by Lemma 3.8. Moreover,
v = u(iN) 4 c(iN)s = cs and v 6= cs, since s 64 v but s 4 cs. Hence, cs is not an indecomposable
conjugator starting at y and Claim 2 is shown. �

Recall that we are trying to compute the arrows of SCG(x) starting at y. In Algorithm 2, we start
with an atom a andwe try to see if there is an arrow c starting at y such that a 4 c or, equivalently, such
that ρa 4 ca 4 c . (ρa and ca were defined in Corollaries 3.1 and 3.2) As arrows are indecomposable,

644 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

ca 4 c would imply ca = c , that is, ca is the only candidate for the arrow c . Lemma 3.10 says that if
F(ρa) 6= {1} then we will have no problem, since either ca can be computed by iterated transport of
ρa along the sliding circuit containing y, or we can be sure that there is no such arrow c , since ca is
decomposable. Unfortunately, it may occur that F(ρa) = {1}, as we can see in the following example:
Example 3.11. Consider in the Artin braid group B5 the elements y = x = ∆ · σ2σ1σ4σ3σ4 · σ1, in left
normal form as written, and s = σ3σ2σ1. It is easy to check that s6(y) = y, that is, y ∈ SC(x). Since
ys = ∆ · σ1σ3 · σ3σ2σ1σ2 is in left normal form as written, ys ∈ SSS(x), that is, ρs = s.
However, s(1) = p(y)−1sp(ys) = 1 and hence F(s) = {1}, that is, the requirements of Lemma 3.10

are not satisfied.

The above example shows that one could possibly have F(ρa) = {1} for some atom a in the
situation of Algorithm 2. In this case, Lemma 3.10 would not guarantee that iterated transport is
sufficient to find ca or to be sure that ca is decomposable. Let us now see that there is another condition
which also ensures that either ca can be computed by iterated transport, or that it is decomposable; it
is given by the corollary to the following result.
Lemma 3.12. Let x ∈ G and v ∈ SC(x). Let s 6= 1 be a positive element such that vs ∈ SSS(x). If s(k) = 1
for some k ≥ 1, then s ∧ p(v) 6= 1.

Proof. This proof parallels the one of (Gebhardt, 2005, Lemma 4.11). Denotew = vs. By hypothesis

s(k) =
(
p(v)p(s(v)) · · · p(sk−1(v))

)−1
s
(
p(w)p(s(w)) · · · p(sk−1(w))

)
= 1,

that is,
s
(
p(w)p(s(w)) · · · p(sk−1(w))

)
= p(v)p(s(v)) · · · p(sk−1(v)).

We will show the result by induction on k. If k = 1, one has sp(w) = p(v), hence s ∧ p(v) = s 6= 1.
Suppose the result is true for k − 1, and consider s(1). We can assume that s(1) 6= 1, otherwise the
result would hold by applying the case k = 1. But we have (s(1))(k−1) = 1, so by induction hypothesis
s(1) ∧ p(s(v)) 6= 1.
Recall that the transport t(1) of an element t at v satisfies t(1) = p(v)−1tp(vt). For t = p(v) this

yields p(v)(1) = p(vp(v)) = p(s(v)). As the transport preserves∧ by Proposition 2.4 (6), one hence has
(s∧p(v))(1) = s(1)∧p(v)(1) = s(1)∧p(s(v)) 6= 1, which implies s∧p(v) 6= 1 by Proposition 2.4 (3). �

Corollary 3.13. Let x ∈ G and v ∈ SC(x). Let a be an atom such that a 64 p(v). Then either F(ρa) 6= {1}
or ca is not an indecomposable conjugator starting at v.

Proof. Suppose that F(ρa) = {1}. Thismeans that some iterated transport (ρa)(k) = 1 for some k ≥ 1.
By Lemma 3.12 we have ρa ∧ p(v) 6= 1. Hence there must exist an atom b such that b 4 ρa ∧ p(v).
Since b 4 p(v) and vp(v)

∈ SC(x), it follows that cb 4 p(v). On the other hand, since b 4 ρa 4 ca, it
follows that cb 4 ca. But one cannot have cb = ca, otherwise a 4 ca = cb 4 p(v), which is not possible
by hypothesis. Therefore, cb is a proper prefix of ca, which means that ca is not an indecomposable
conjugator starting at v. �

Recall that if F(ρa) 6= {1} then either ca can be found by iterated transport or ca is not
indecomposable by Lemma 3.10. Hence, if a 64 p(v), we just need iterated transport in order to
compute or to discard ca. The case that remains to be dealt with is the case a 4 p(v) and F(ρa) = {1}.
Wewill now consider themore general situation that F(ρs) = {1} for some element s ∈ G. Iterated

transport of ρs reaches the ‘‘wrong’’ fixed point in this situation. The solution is to apply iterated
transport not to ρs itself, but to a related element p satisfying ρs 4 p 4 cs for which the existence
of v ∈ F(p) with s 4 v is guaranteed. To this end we introduce the notion of the ‘‘pullback’’ of an
element s, defined as the 4-minimal among the elements whose transport has s as a prefix.
Definition 3.14. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive. By Propositions 2.6 and 2.4(6),
there exists a unique 4-minimal positive element s(1) ∈ G satisfying zs(1) ∈ SSS(x) and s 4 (s(1))(1),
where (s(1))(1) indicates the transport of s(1) at z. We call s(1) the pullback of s at y.
For any integer k > 1 we define recursively the k-fold pullback s(k) = (s(k−1))(1) of s at y. Note that

(s(k−1))(1) indicates the pullback of s(k−1) at the unique elementw in the sliding circuit of y satisfying
sk−1(w) = y. We also define s(0) = s.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 645

Lemma 3.15. Let x ∈ G, z ∈ SC(x), y = sk(z) for a positive integer k and let s ∈ G be positive. Then, the
k-fold pullback s(k) of s at y is the 4-minimal positive element satisfying s 4 (s(k))(k) and zs(k) ∈ SSS(x).

Proof. The claim holds for k = 1 by definition of the pullback. Suppose the claim is true for k− 1. By
Proposition 2.4 (4), one then has s 4 (s(k−1))(k−1) 4 (((s(k−1))(1))(1))(k−1) = (s(k))(k). Moreover, if α is
a positive element such that s 4 α(k) and zα ∈ SSS(x), then by Proposition 2.4 and Lemma 2.1, α(1)

is a positive element satisfying s 4 (α(1))(k−1) and s(z)α
(1)
= s(zα) ∈ SSS(x). Hence, s(k−1) 4 α(1) by

induction. By the definition of the pullback of s(k−1), we then have s(k) = (s(k−1))(1) 4 α, as wewanted
to show. �

Lemma 3.16. Let x ∈ G, z ∈ SC(x), y = sk(z) for a positive integer k and let s, t ∈ G such that 1 4 s 4 t.
Then, the k-fold pullbacks s(k) of s and t(k) of t at y satisfy s(k) 4 t(k).

Proof. By Lemma 3.15, we have t 4 (t(k))(k) and zt(k) ∈ SSS(x). Hence s 4 t 4 (t(k))(k) and, again using
Lemma 3.15, we obtain s(k) 4 t(k) as we wanted to show. �

Lemma 3.17. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive. Then the pullback s(1) of s at y
satisfies s(1) 4 ∆sup(s). In particular, the pullback of a simple element is simple.

Proof. Let q = sup(s) ≥ 0 and consider transport at z. We have s 4 ∆q = (∆q)(1) by
Proposition 2.4 (3). Moreover, ∆q is positive and z∆

q
∈ SSS(x) by Lemma 1.10. By 4-minimality of

s(1), we obtain s(1) 4 ∆q as claimed. �

We remark that in general ∆q(1) 6= ∆q. (This is no surprise, as s(1) = ∆q does not imply s = ∆q.)
Consider, for instance, the braid y = σ3σ2σ1σ3σ2σ4 ∈ B5. It is easy to check that s4(y) = y. Denoting
z = s3(y) = σ2σ1σ3σ2σ3σ4 and s = σ3σ2σ1σ4σ3σ2σ4σ3σ4 one easily verifies that the transport s(1) of
s at z is∆, that is, the pullback∆(1) of∆ at y satisfies∆(1) 4 s 6= ∆. (In fact, one has∆(1) = s.)
The next result shows how one can use pullbacks to compute cs in the case in which F(ρs) = {1}

may occur.

Proposition 3.18. Let x ∈ G, v ∈ SC(x) and let N be the length of the sliding circuit of v, that is, let N be
the smallest positive integer such that sN(v) = v. Let s ∈ P \ {1} such that vs ∈ SSS(x) and for integers
k ≥ 0 consider the iterated pullbacks s(kN) at v. Let i ≥ 0 be such that s(iN) = s(jN) for some j > i. Then cs
is the only element in F(s(iN)) which admits s as a prefix. In particular, F(s(iN)) 6= {1}.

Proof. First note that by Lemma 3.17, we have 1 4 s(kN) 4 ∆sup(s) for all k ≥ 0. As G is of finite
type, the number of such elements is finite, whence there exist integers i ≥ 0 and j > i such that
s(iN) = s(jN).
Letm = i(j− i) ≥ i and denote p = s(mN). Notice that iterated N-fold pullback becomes periodic of

period j−i starting from the ith term, hence p(k(j−i)N) = p for all k ≥ 0, that is, p = s(k(j−i)N) for all k ≥ i.
Now recall from Lemma 2.5 that, since vcs ∈ SC(x), we have (cs)(tN) = cs for some t ≥ 1. Consider
then M > i to be a multiple of t , big enough so that p(M(j−i)N) ∈ F(p). According to Lemma 3.15,
p = s(M(j−i)N) is the 4-minimal positive element such that s 4 p(M(j−i)N). This implies that F(p) 6= {1}
and that F(p) contains an element admitting s as a prefix. Moreover, s 4 cs = (cs)(M(j−i)N), where the
equality in the last step holds sinceM is a multiple of t . By the minimality of p one finally has p 4 cs.
We can then apply Lemma 3.10 to p, and conclude that cs = p(M(j−i)N) ∈ F(p). Uniqueness also follows
from Lemma 3.10.
It only remains to be shown that F(p) = F(s(iN)), that is F(s(mN)) = F(s(iN)) form as above; indeed,

we will show that F(s(kN)) = F(s(iN)) for all k ≥ i. Since iterated N-fold pullback is periodic of period
j− i from the ith term, we can assume i < k < j.
We have s(iN) 4 (s(kN))((k−i)N) and also s(kN) 4 (s(jN))((j−k)N) = (s(iN))((j−k)N) by Lemma 3.15.

Applying (k− i)N-fold transport to the second expression and using Proposition 2.4 (4), one obtains
(s(kN))((k−i)N) 4 (s(iN))((j−i)N). Together with the first expression, this yields s(iN) 4 (s(kN))((k−i)N) 4
(s(iN))((j−i)N).
Using Proposition 2.4 (4) again, we can for any K ≥ 0 apply K -fold transport to this expression

and we see that (s(iN))(K) 4 (s(kN))(K+(k−i)N) 4 (s(iN))(K+(j−i)N) for all K ≥ 0. That is, for any integer K

646 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

large enough so that s′ = (s(iN))(K) ∈ F(s(iN)), we have cs′ = s′ 4 (s′)((j−i)N) and hence s′ = (s′)((j−i)N)
by Lemma 3.9 (where s′ = cs′ is chosen as the element s in the statement of the lemma). Hence,
the above inequality implies s′ = (s(kN))(K+(k−i)N). As this is true for all sufficiently large K , we have
F(s(iN)) = F(s(kN)). In particular, F(p) = F(s(iN)), whence cs ∈ F(s(iN)), as we wanted to show. �
The following result allows us to compute pullbacks in the situation of Algorithm 2.

Proposition 3.19. Let x ∈ G, z ∈ SC(x), y = s(z) and let s ∈ G be positive such that ys is super summit.
Then the pullback of s at y, as given in Definition 3.14, is

s(1) =
(
p(z) s p�(ys)−1

)
∨ 1 .

Proof. Let u =
(
p(z) s p�(ys)−1

)
∨ 1. We show that u satisfies the defining properties of s(1). The

following commutative diagram illustrates the situation; all conjugating elements corresponding to
arrows will be shown to be positive.

w = s�(ys)
a //

p(s�(ys))= p(w) //

p�(ys)
//

zu
α //

p(zu) //

ys //

p(ys)
//

s(s�(ys)) // s(zu) // s(ys)

z

u

OO

p(z)
// y

s

OO

u(1)

55kkkkkkkkkkkkkkkkkkkkkkkkk

Claim 1: zu ∈ SSS(x).
Proof: As ys ∈ SSS(x), we have zp(z) s p�(ys)−1

= s�(ys) ∈ SSS(x) by Lemma 2.13. Then, Corollary 2.7
implies zu ∈ SSS(x), since u =

(
p(z) s p�(ys)−1

)
∨ 1.

Claim 2: u is a positive element and s 4 u(1).
Proof: The element u is positive by definition. Moreover, defining α = p�(ys) ∧� p(z) s, we have
u =

(
p(z) s p�(ys)−1

)
∨

(
p(z) s s−1 p(z)−1

)
= p(z) s

(
p�(ys)−1 ∨ s−1 p(z)−1

)
= p(z) sα−1 by

Lemma 1.3.
Since α is a positive suffix of p�(ys), we can write p�(ys) = aα for some positive a. Denoting

w = s�(ys), we have wa = s�(ys)p
�(ys)α−1

= (ys)α
−1
= yp(z)

−1u
= zu. Hence wa = zu ∈ SSS(x)

by Claim 1.
By Proposition 2.15, aα = p�(ys) 4 p(s�(ys)) = p(w). On the other hand, as a is positive,

w ∈ SSS(x) and wa ∈ SSS(x), we obtain with Proposition 2.4 (2) that p(w) 4 a p(wa). Therefore
a α 4 p(w) 4 a p(wa), so α 4 p(wa) = p(zu). This means 1 4 α−1p(zu), whence we finally obtain
s 4 s α−1 p(zu) = p(z)−1 u p(zu) = u(1).
Claim 3: If t is a positive element such that zt ∈ SSS(x) and s 4 t(1), then u 4 t .
Proof: Write t(1) = sγ for some positive element γ and apply cyclic right sliding to y, ys and
yt
(1)
= s(zt), as shown in the following commutative diagram.

zt
p(zt) // s(zt) s�(s(zt))

p�(s(zt))oo

ys

γ

OO

s�(ys)

γ (1)
�

OO

p�(ys)oo

z
p(z) //

t

OO

y

s

OO

s�(y)

s(1)
�

OO

p�(y)oo

We obtain t = p(z) s γ p(zt)−1 = p(z) s p�(ys)−1 γ (1)
� [

p�(s(zt)) p(zt)−1
]
, where γ (1)

�
is positive

by Proposition 2.14 and the factor in brackets is positive by Proposition 2.15. Therefore, we have
p(z) s p�(ys)−1 4 t , and since t is positive, one finally obtains u =

(
p(z) s p�(ys)−1

)
∨ 1 4 t . �

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 647

Example 3.20. Consider the situation from Example 3.11. The trajectory of y = ∆ · σ2σ1σ4σ3σ4 · σ1
under cyclic sliding has length N = 6. Computing iterated pullbacks of ρs = s = σ3σ2σ1 at y we
obtain s(12) = s(6) = σ3σ4. Hence, using the notation from Proposition 3.18, we have i = 1 and j = 2.
Computing iterated transports of p = s(iN) = s(6) = σ3σ4, we obtain p(12) = p(6) = σ3σ2σ1σ4.

Hence, we have F(p) = {p(6)} and as s 4 p(6), we obtain cs = p(6) = σ3σ2σ1σ4.
Note that p /∈ F(p), that is, computing iterated transports is necessary even after reaching a stable

loop under iterated N-fold pullback.
The results obtained in this section ensure that step 3(c) of Algorithm 2, if executed, will compute

an element (ρat)(iN), one of whose iterated transports is precisely cat . This computation is only done
whenever at 4 p(v), which is the only case, as we saw above, in which we cannot be sure to find cat or
to be able to discard cat as decomposable using F(ρat). Note, in particular, that computing pullbacks is
not necessary if v is rigid (or, by (Gebhardt and González-Meneses, in press, Theorem 1) equivalently,
has a rigid conjugate). The algorithm continues in step 3 (d) by applying iterated transport to the
corresponding element (either ρat or (ρat)(iN)) until the first repetition occurs. Then, step 3 (e) checks
whether any of the elements in F(ρat) respectively F((ρat)(iN)) admits at as a prefix, in which case it
will precisely be cat by Lemma 3.10. If at does not occur as a prefix, then cat is not indecomposable by
Lemma 3.10, Corollary 3.13 and Proposition 3.18.
However, even if cat occurs as an element of F(ρat) respectively F((ρat)(iN)), it is not necessarily an

indecomposable conjugator. The latter property is checked in step 3 (e)i: The set Atomswill eventually
contain the atoms ak such that cak is an indecomposable conjugator starting at v and k = max{i | ai 4
cak}. Suppose that we have computed cat for some atom at . If t is not the biggest index among the
atoms dividing cat , then we can discard cat at this step since, if it is indecomposable, it will appear
again in a further step of the algorithm, when the mentioned atom is processed. On the other hand, if
t is the maximal index among the atoms dividing cat but cat is decomposable, then there must exist
some indecomposable cal 4 cat , where l < t is maximal among the atoms dividing cal . In particular,
al has been processed before at , and we must have al ∈ Atoms. Therefore, if ak 64 cat for all ak ∈ Atoms
and also for all k > t , we can be sure that cat is indecomposable, and we can add at to the set Atoms.
This is what is done in step 3 (e)i, hence Algorithm 2 computes the arrows starting at v, as claimed.

4. Complexity of the algorithms

4.1. Computing in Garside groups

In this section, we will describe how one can perform all the computations required by our
algorithms in any Garside group of finite type, provided some basic operations on simple elements
can be performed. We refer the reader to (Michel, 1997) for a similar approach.
We remark that in a particular Garside group there may be specific algorithms having better

complexity than the generic ones we describe below. This is in particular the case for braid groups
(see Epstein et al., 1992 and Birman et al., 1998). Hence one should not use the algorithms below if
one just needs to make computations in braid groups.

4.1.1. Context of the complexity analyses
We analyse the complexity of algorithms in terms of two numerical invariants of the Garside

group G: firstly the number λ of atoms of G, and secondly the maximal length ‖∆‖ of an expression of
the Garside element in terms of atoms. Considering the posets of simple elements with respect to the
partial orders 4 and <, these invariants give the number of minimal elements respectively the height
of the poset.
Example 4.1.
(1) Consider the Artin braid group Bn on n strands. There are n! simple elements in Bn. We have

λ = n− 1 and ‖∆‖ = 1
2n(n− 1).

(2) Consider the braid group BKLn on n strands in the Birman–Ko–Lee presentation. There are (2n)!
n!(n+1)!

simple elements in BKLn. We have λ = 1
2n(n− 1) and ‖∆‖ = n− 1.

648 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

Note that in both cases, λ and ‖∆‖ grow polynomially in n, whereas the number of simple elements
grows exponentially in n.

Although we are in this section not specifically interested in braid groups, Example 4.1 illustrates
that precalculating information for all simple elements, and evenproducing an explicit list of all simple
elements, should be avoided; the number of simple elements even in relatively basic Garside groups
can be impractically large. In the case of the braid groups, any such precomputation would result in
both the time and the space complexity of the algorithm being exponential in n. The example also
shows that the number of simple elements would be a very bad parameter to use for the purpose of a
complexity analysis.
We will frequently have to compute a sequence of elements and test for repetitions. In order to do

that efficiently, we use hash tables.

Hash tables
Let K ∈ N, let D ∈ N be coprime to K , and let h : M → {0, . . . , K − 1}. A hash table of size K

for storing elements of M is an array T of size K , whose fields are labelled by 0, . . . , K − 1, which is
initially empty. The function h is called the hash function.
The hash positions for an element m ∈ M are the fields hi(m) = h(m) + iD (mod K) of T for

i = 0, 1, . . .; the position h0(m) is called the primary hash position of m, the positions hi(m) with
i > 0 are called the secondary hash positions ofm.
An elementm ∈ M is inserted into T by storing it in the first of its hash positions which is empty.

In order to test whether an elementm is contained in T it is sufficient to examine its hash positions in
order, until either the element m is found or an empty hash position is encountered. The probability
of secondary hash positions being used can be made arbitrarily small by choosing K large compared
to the number of elements stored in T . If this probability is negligible, testing whether an element is
in T , and inserting it if it is not, on average requires the computation of one hash value and possibly
one element comparison.
For more information on hashing we refer to Knuth (1998).

4.1.2. Basic assumptions
Assumption 4.2. Let G be a Garside group of finite type. We assume that the Garside element ∆ of
G and the list A = {a1, . . . , aλ} of atoms of G are known and that the following operations can be
performed effectively; we consider the cost of these operations to be O(C).

(H) Given a simple element s, compute a hash value for s.
(Op) Given an atom a ∈ A and a simple element s, test whether a 4 s (respectively s < a) and, if yes,

compute the simple element a−1s (respectively s a−1).

We further assume that elements of G are stored as products (sequences) of simple elements or
inverses of simple elements. Then, two elements consisting of at most k such factors can bemultiplied
at a cost of O(k) simply by concatenating the corresponding sequences.
We remark that we also could have considered the following additional basic operations:

(Op1) Given a simple element s, test whether s = 1.
(Op2) Given two simple elements s and t , test whether s = t .
(Op3) Given an atom a ∈ A and a simple element s, test whether sa (resp. as) is simple and, if yes,

compute the simple element sa (resp. as).

However, if s is a simple element, then s = 1 is equivalent to ai 64 s for all i = 1, . . . , λ, where the
latter condition can be tested using the operation (Op) atmost λ times. Hence, (Op1) can be realised in
terms of (Op) at a cost of O(Cλ). We will moreover see below that (Op2) and (Op3) can be realised in
terms of (Op) at a cost of O(Cλ ‖∆‖). While doing somay not yield themost efficient ways of realising
(Op1), (Op2) and (Op3), it does not change the complexities of the algorithms we consider.
We remark that the operations (Op) and (Op3) can be realised at equal cost inmanyGarside groups;

this is the case for braid groups, for instance. However, aswe areworkingwith a generic Garside group
of finite type,wewant to keep our assumptions to theminimum.Wemoreovermention that one could
use (Op3) as basic operation instead of (Op): if the cost of (Op3) is O(C), then one can test at a cost

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 649

of O(Cλ) whether a simple element is equal to ∆ and the operations (Op) and (Op2) can be realised
in terms of (Op3) at a cost of O(Cλ ‖∆‖); the map ∂ induces a duality between this situation and
the situation from Assumption 4.2. Finally, note that (Op1) can be realised in terms of (Op3) at a cost
of O(Cλ), if ∆ is the lcm of the atoms of G: in this case, ∂(s) = ∆ is equivalent to ai 4 ∂(s) for all
i = 1, . . . , λ, that is, s = 1 is equivalent to sai ∈ [1,∆] for all i = 1, . . . , λ.
An important remark concerning the algorithms below is the following: One of themost frequently

used operations consists of determining an atom a such that a 4 s, given a nontrivial simple element
s. If the simple elements are stored as products of atoms, this operation has a cost of O(1). However,
if the simple elements are stored in a different way, it is possible that the only way to find such an
atom is to check whether a 4 s for every a ∈ A, until the answer is positive. This has time complexity
O(Cλ). Therefore, in the algorithms below we will sometimes write ‘Take an atom a 4 s’, and we will
assume that this operation has a cost of O(Cλ), although the reader should notice that the actual cost
could be only O(1) in some situations.

4.1.3. Algorithms for computing in a generic Garside group
The first computations which we will express in terms of the basic operations are computing left

and right complements of simple elements and conjugation of simple elements by ∆ or ∆−1. We
will also see a generic way of performing the operations (Op2) and (Op3). The following algorithm
underlies all of these:

Computing the right complement of a simple element

Input: A simple element s.
Output: The simple element ∂(s) = s−1∆.

(1) Set d = ∆.
(2) While s 6= 1 do:
(a) Take an atom a 4 s.
(b) Set d = a−1d and s = a−1s.

(3) Return d.

At most ‖∆ ‖ passes through the loop are required and the costs of the test s 6= 1, step 2(a)
and step 2(b) are O(Cλ), O(Cλ) and O(C), respectively. Hence, the complexity of this algorithm is
O(Cλ ‖ ∆ ‖). Notice that ∂−1(s) = ∆ s−1 can be computed in the same way, replacing 4 by <
and multiplying with a−1 on the right instead of on the left. The given algorithm can also be used
to compute τ(s) = ∂2(s) or τ−1(s) = ∂−2(s), so all these operations have a cost of O(Cλ ‖∆‖).
Given a simple element s and an atom a, one can determine whether sa is simple by computing

∂(s) with the above algorithm and checking whether a 4 ∂(s), where the latter step has a cost of
O(C) by Assumption 4.2. Moreover, if sa is simple, one can compute sa = ∂−1(a−1∂(s)). That is, we
can perform operation (Op3) that way. Similarly, one can determine whether as is simple by checking
whether ∂−1(s) < a and, if it is, one can compute as = ∂(∂−1(s)a−1). All these operations have a cost
of O(Cλ ‖∆‖).
Next, we will describe the lattice operations on simple elements, which are important for

computing normal forms of elements.

Computing the greatest common divisor of two simple elements

Input: Two simple elements s and t .
Output: The simple element s ∧ t .

(1) Set i = 1 and d = ∆.
(2) While i ≤ λ do:
(a) If ai 4 s and ai 4 t , then
(b) set d = a−1i d, set s = a

−1
i s, set t = a

−1
i t and set i = 1,

else
(c) set i = i+ 1.

(3) Return ∂−1(d).

650 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

The tests in step 2(a) and the operations in step 2(b) have a cost of O(C), step 3 has a cost of
O(Cλ ‖∆‖), and all remaining operations have a cost of O(1). As step 2(b) is executed at most ‖∆‖
times, with at most λ passes through the while loop between two consecutive executions, the cost
of step 2 is O(Cλ ‖∆‖), so the complexity of the algorithm is also O(Cλ ‖∆‖). Note that finding the
atoms which are common divisors of s and t is critical for the complexity of the algorithm. Thus, even
if step 3 was avoided bymaking use of a realisation of (Op3) with a cost of O(C), the complexity of the
algorithm would not improve.
By symmetry, one can similarly compute the greatest common divisor s ∧� t with respect to <.
Least common multiples of simple elements with respect to 4 or < can now be computed using

the following formulae, which can easily be seen to hold:

s ∨ t = ∂−1
(
∂(s) ∧� ∂(t)

)
, s ∨� t = ∂

(
∂−1(s) ∧ ∂−1(t)

)
.

Therefore, computing s ∨ t or s ∨� t also takes time O(Cλ ‖∆‖).
As s = t is equivalent to s = s∧t = t , we can use the followingmodification of the above algorithm

to test whether two simple elements are equal, that is, perform operation (Op2).

Testing whether two simple elements are equal

Input: Two simple elements s and t .
Output: The truth value of s = t .

(1) Set i = 1.
(2) While i ≤ λ do:
(a) If ai 4 s and ai 4 t , then
(b) set s = a−1i s, set t = a

−1
i t and set i = 1,

else
(c) set i = i+ 1.

(3) If s = 1 and t = 1, then return true, else return false.

The cost of step 3 is O(Cλ); all other steps are as before. Hence, the complexity of the algorithm is
O(Cλ ‖∆‖). This implies, in particular, that two elements of canonical length at most kwhose (left or
right) normal forms are known, can be compared at a cost of O(Cλk ‖∆‖) by comparing their infima
(at a cost of O(1)) and at most k pairs of simple elements.
The following algorithm computing the local sliding of a pair of simple elements is also just a small

modification of the algorithm computing the gcd of two simple elements:

Computing the local sliding of a pair of simple elements

Input: Two simple elements s and t .
Output: The simple elements s(∂(s) ∧ t) and (∂(s) ∧ t)−1t .

(1) Set i = 1 and s′ = ∂(s).
(2) While i ≤ λ do:
(a) If ai 4 s′ and ai 4 t , then
(b) set s′ = a−1i s

′, set t = a−1i t and set i = 1,
else

(c) set i = i+ 1.
(3) Return ∂−1(s′), t .

The cost of step 1 is O(Cλ ‖∆‖); all other steps are identical. Hence, the local sliding of a pair of
simple elements can also be computed at a cost of O(Cλ ‖∆‖).
Knowing how to compute local slidings, one can use the standard algorithms to compute the left

or right normal form of any element (see Section 1.1), based on the following well-known result.

Proposition 4.3 (see, for example, (Charney, 1992, Props. 3.1 and 3.3) or (Epstein et al., 1992)). Let s1,
. . . , sk and s′0, s

′

k+1 be simple elements such that the product s1 · · · sk is in left normal form as written.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 651

(1) Consider the product s′0s1 · · · sk. For i = 1, . . . , k apply a local sliding to the pair s
′

i−1si, that is, let
ti = ∂(s′i−1) ∧ si and define s

′′

i−1 = s
′

i−1ti and s
′

i = t
−1
i si. Finally define s

′′

k = s
′

k. Then, s
′′

0 · · · s
′′

k is the
left normal form of s′0s1 · · · sk (where possibly s

′′

0 = ∆ or s
′′

k = 1).
(2) Consider the product s1 · · · sks′k+1. For i = k, . . . , 1 apply a local sliding to the pair sis

′

i+1, that is, let
ti = ∂(si)∧ s′i+1 and define s

′

i = siti and s
′′

i+1 = t
−1
i s
′

i+1. Finally define s
′′

1 = s
′

1. Then, s
′′

1 · · · s
′′

k+1 is the
left normal form of s1 · · · sks′k+1 (where possibly s

′′

1 = ∆ or s
′′

k+1 = 1).

Given an element x written as a product of k simple elements or inverses of simple elements, the
left normal formof x can be obtained as follows. First, one replaces each inverse s−1 of a simple element
with∆−1∂−1(s); at most k replacements are necessary and each replacement has a cost ofO(Cλ ‖∆‖).
Then, one collects all appearances of ∆ or ∆−1 on the left hand side, applying τ or τ−1 as required,
so that the element will be written as ∆qs1 · · · sk, where each si is a simple element; the number of
applications of τ or τ−1 is bounded by k(k − 1)/2 and each application has a cost of O(Cλ ‖∆‖).
Finally, one applies local slidings to every pair of consecutive simple elements until every pair is left
weighted; it follows from Proposition 4.3 that at most k(k− 1)/2 local slidings are required, each at a
cost of O(Cλ ‖∆‖). Therefore, the complexity of computing the left normal form of x is O(Cλk2 ‖∆‖).
Computing right normal forms is analogous and has the same complexity.
Note, however, that if the left normal form (resp. the right normal form) of x is known and s is a

simple element, then the left normal forms (resp. the right normal forms) of xs, sx, xs−1, s−1x, xs and
xs
−1
can be computed at a cost of O(Cλk ‖∆‖), where k = `(x): the number of applications of τ or

τ−1 is bounded by k and only O(k) local slidings are required by Proposition 4.3.
We now show how to compute the gcd of two arbitrary elements a and b, given as products of

simple elements and inverses of simple elements with at most k factors. First, we write them in left
normal form, say∆pa1 · · · ar and∆qb1 · · · bt . If we denotem = min{p, q}, we can consider a′ = ∆−ma
and b′ = ∆−mb. Notice that a′ and b′ are positive elements, and one of them has infimum zero. Since
a∧b = ∆ma′∧∆mb′ = ∆m(a′∧b′), it is sufficient to know how to compute gcds of positive elements
and we will hence detail the algorithm to compute a ∧ b assuming a and b are positive; the cost of
reducing to this case by computing the normal forms of a and b is O(Cλk2 ‖∆‖). We remark that, if
the left normal form of a positive element a is known, then a ∧ ∆ is also known, since it is precisely
the first factor in its left normal form (which may be∆).

Computing the greatest common divisor of two positive elements

Input: Two positive elements a and b.
Output: The element a ∧ b.

(1) Set u = ∆, a′ = a, b′ = b and d = 1.
(2) While u 6= 1 do:
(a) Compute the left normal forms of a′ and b′.
(b) Set s = a′ ∧∆ and t = b′ ∧∆.
(c) Set u = s ∧ t .
(d) Set d = du, set a′ = u−1a′ and b′ = u−1b′.

(3) Return d.

Since a and b are positive, one has (a ∧ b) ∧ 1 = 1. It is then easy to see by induction that after
the ith pass through the while loop one has d = (a ∧ b) ∧∆i. Hence, if a and b are given as products
of simple elements and inverses of simple elements with at most k factors, the number of repetitions
of the while loop is bounded by k+ 1. The cost of step 2(a) in the first pass through the while loop is
O(Cλk2 ‖∆‖), but in all subsequent passes, the cost is O(Cλk ‖∆‖) by Proposition 4.3. As the costs of
steps 2(b), 2(c) and 2 (d) are O(1), O(Cλ ‖∆‖) and O(k), respectively, the complexity of the algorithm
hence is O(Cλk2 ‖∆‖). Computing the right gcd a ∧� b is analogous and has the same complexity.
One can now compute the least common multiple of two elements a and b, given as products of

simple elements and inverses of simple elements with at most k factors, as follows. Compute the
normal forms of a and b and letm = max{sup(a), sup(b)}. The elements a−1∆m and b−1∆m are both
positive, whence we can compute the element d = (a−1∆m) ∧� (b−1∆m) using (the right version of)

652 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

the algorithm above. Then, a ∨ b = (a−1 ∧� b−1)−1 = ∆m((a−1∆m) ∧� (b−1∆m))−1 = ∆md−1. The
cost of this computation is dominated by computing d as the right gcd of a−1∆m and b−1∆m which
has cost O(Cλk2 ‖∆‖). Thus, the complexity of computing the lcm a ∨ b is O(Cλk2 ‖∆‖). Computing
the right lcm a ∨� b is analogous and has the same complexity.
The computations of the preferred prefix and the cyclic sliding of an element can now be done

just by applying the definitions, since we already know how to perform all operations that occur.
For instance, in order to compute the preferred prefix of an element x, given as a product of simple
elements and inverses of simple elements with k factors, one first computes the left normal form of
x = ∆px1 · · · xr , which takes timeO(Cλk2 ‖∆‖). Then one applies the formula given in Definition 1.11,
namely p(x) = ι(x) ∧ ∂(ϕ(x)). Since ι(x) = τ−p(x1) with |p| ≤ k and ϕ(x) = xr , the complexity of
computing p(x) from the normal form of x is O(Cλk ‖∆‖). The normal form of s(x) = xp(x) can then
be computed in O(Cλk ‖∆‖). Thus, the cost of applying a cyclic sliding is dominated by the cost of
computing the normal form, that is, applying a cyclic sliding has complexity O(Cλk2 ‖∆‖). Note that
if the normal form of x is known, then p(x) and the normal form of s(x) can be obtained at a cost of
O(Cλk ‖∆‖).
The transport of an element α at an element x is given by α(1) = p(x)−1αp(xα). If x and α are

given as products of simple elements and inverses of simple elements with at most k factors, then α(1)
can be computed with the above formula in time O(Cλk2 ‖∆‖) by the arguments from the previous
paragraph. In otherwords, applying a transport has the same complexity as computing a normal form.
Note that if the normal form of x is known and α is simple, then the normal form of xα can be obtained
at a cost of O(Cλk ‖∆‖), whence α(1) can be computed at a cost of O(Cλk ‖∆‖) by the arguments
above.
Computing the preferred suffix, applying a cyclic right sliding and applying right transport are

analogous and the complexities are the same as for the left versions discussed above.
Finally, the pullback of a positive element s at an element y, with the hypotheses and the notation

of Proposition 3.19, is s(1) =
(
p(z) s p�(ys)−1

)
∨ 1; we assume that we also know the element z. If

y, z and s are given as products of simple elements and inverses of simple elements with at most k
factors, then s(1) can be computed in time O(Cλk2 ‖∆‖) using the operations described above. If s is
simple and if the left normal form of z and the right normal form of y are known, then p(z) s p�(ys)−1
can be computed at a cost of O(Cλk ‖∆‖) and, since this product involves only 3 simple factors, the
subsequent computation of the lcm has a cost of O(Cλ ‖∆‖), whence in this case s(1) can be obtained
at a cost of O(Cλk ‖∆‖). Computing the right pullback s(1)� is analogous and has the same complexity.
Summarising the results obtained in this section, we have:

Theorem 4.4. Let G be a Garside group of finite type with Garside element ∆ and set of atoms A =
{a1, . . . , aλ} for which Assumption 4.2 is satisfied. Moreover, let a be an atom of G, let s and t be simple
elements of G and let x, y and α be elements of G, given as products of simple elements or inverses of simple
elements with at most k factors.

(1) The following operation can be performed in O(Cλ):
• Test whether s = 1.

(2) The following operations can be performed in O(Cλ ‖∆‖):
• Test whether s = t.
• Compute ∂(s), ∂−1(s), τ(s) or τ−1(s).
• Test whether the product as is simple and, if so, compute as.
• Test whether the product sa is simple and, if so, compute sa.
• Compute s ∧ t, s ∧� t, s ∨ t or s ∨� t.
• Perform a local (left or right) sliding on the product s · t.

(3) The following operations can be performed in O(Cλk ‖∆‖):
• Test whether x = y, if the left normal forms or the right normal forms of x and y are known.
• Compute the left normal form [resp. the right normal form] of xs, sx, xs−1, s−1x, xs or xs

−1
, if the

left normal form [resp. the right normal form] of x is known.
• Compute p(x) or s(x) [resp. p�(x) or s�(x)], if the left normal form [resp. the right normal form] of
x is known.

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 653

• Compute the left transport s(1) [resp. the right transport s(1)
�
] of s at x, if the left normal form

[resp. the right normal form] of x is known.
• Compute the left pullback s(1) [resp. the right pullback s(1)�] of s at x, if it is defined and if the right
normal form [resp. the left normal form] of x and the left normal form of the element z ∈ SC(x)
satisfying s(z) = x [resp. the right normal form of the element z ∈ SC�(x) satisfying s�(z) = x]
are known.

(4) The following operations can be performed in O(Cλk2 ‖∆‖):
• Compute the left normal form of x or the right normal form of x.
• Compute x ∧ y, x ∧� y, x ∨ y or x ∨� y.
• Compute p(x), p�(x), s(x) or s�(x).
• Compute the left transport α(1) of α at x or the right transport α(1)

�
of α at x.

• Compute the left pullback α(1) [resp. the right pullback α(1)�] of α at x, if it is defined and if the
element z ∈ SC(x) satisfying s(z) = x [resp. the element z ∈ SC�(x) satisfying s�(z) = x] is
known.

4.2. Complexity of the new algorithms

Knowing the computational cost of the basic operations, we can now analyse the complexity of the
algorithms for computing SC(x) from Section 1.3. Firstly, we define some bounds which will be used
in the sequel.

Notation 4.5. Let x be an element of G given as a product of simple elements or inverses of simple
elements with at most k factors.

[Distance to cyclic sliding repetition] Let T be an integer such that there exist two integers 0 ≤ i <
j ≤ T satisfying si(x) = sj(x).

[Length of sliding circuits] Let M be an integer such that for any element z ∈ SC(x) there exists a
positive integer N ≤ M with sN(z) = z.

[Distance to transport repetition] Let R be an integer such that for any element z ∈ SC(x) and any
simple element s satisfying zs ∈ SSS(x) there exist two integers 0 ≤ i < j ≤ R satisfying
s(iN) = s(jN), where sN(z) = z and s(m) denotesm-fold transport at z form ∈ N.

Remark 4.6. It is easy to see that integers T , M and R as above exist and to give some obvious (but
very crude) upper bounds for them: By Corollary 2.2, iterated cyclic sliding becomes periodic, so T as
above exists. Indeed, it follows from Proposition 2.3 that sm(x) ∈ SSS(x) for all m ≥ k ‖∆‖. Since
|SSS(x)| ≤ |[1,∆]|k, it is possible to choose T ≤ k ‖∆‖ + |[1,∆]|k. Moreover, as SC(x) ⊆ SSS(x) is
finite,M as above exists and one can chooseM ≤ |SC(x)|. Hence, in particular,M ≤ |[1,∆]|k. Finally,
by Proposition 2.4 (5), transports of simple elements are simple. Since G is of finite type, R as above
exists and one can choose R ≤ |[1,∆]|.

Lemma 4.7. Let x ∈ G, z ∈ SC(x), and let s be a simple element such that zs ∈ SSS(x). If N, i, j and K
are integers such that sN(z) = z, 0 ≤ i < j ≤ K and

(
s(KN)

)(iN)
=
(
s(KN)

)(jN), where t(m) denotes m-fold
transport of t at z and t(m) denotes m-fold pullback of t at z for m ∈ N, then s(KN) = s((K+j−i)N).

Proof. By Lemma 3.15 we have s(KN−iN) 4
((
s(KN−iN)

)
(iN)

)(iN)
=
(
s(KN)

)(iN)
=
(
s(KN)

)(jN). Again using
Lemma 3.15, we obtain

(
s(KN−iN)

)
(jN) 4 s(KN), that is, s((K+j−i)N) 4 s(KN).

Similarly, we have s(KN−jN) 4
((
s(KN−jN)

)
(jN)

)(jN)
=
(
s(KN)

)(jN)
=
(
s(KN)

)(iN) and from this obtain(
s(KN−jN)

)
(iN) 4 s(KN), that is, s((K+i−j)N) 4 s(KN). Applying (j − i)N-fold pullback to the last statement

yields s(KN) 4 s((K+j−i)N) using Lemma 3.16.
Hence, s(KN) = s((K+j−i)N) as we wanted to show. �

654 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

Corollary 4.8. Consider for x ∈ G the bounds from Notation 4.5. For any element z ∈ SC(x) and any
simple element s satisfying zs ∈ SSS(x) there exist two integers 0 ≤ i < j ≤ 2R satisfying s(iN) = s(jN),
where sN(z) = z and s(m) denotes m-fold pullback of s at z for m ∈ N.

Proof. By the choice of R there are integers 0 ≤ i′ < j′ ≤ R such that
(
s(RN)

)(i′N)
=
(
s(RN)

)(j′N). We
then have s(RN) = s((R+j′−i′)N) by Lemma 4.7. Setting i = R and j = R+ j′ − i′, we have 0 ≤ i < j ≤ 2R
and s(iN) = s(jN) as desired. �

Proposition 4.9. Let G be a Garside group of finite type with Garside element∆ and λ atoms, and let x be
an element of G given as a product of simple elements or inverses of simple elements with at most k factors.
Using the bounds from Notation 4.5, the complexity of Algorithm 1 is O(Cλk(k+ T) ‖∆‖).

Proof. Observe that `(si(x)) ≤ k for all non-negative integers i. In particular, the normal forms of two
such elements can be compared at a cost of O(Cλk ‖∆‖) by Theorem 4.4. Note further that a hash
function depending on all factors in the normal form can be computed at a cost of O(Ck), if the normal
form is known. We use a sufficiently large hash table, together with this hash function, to store the
trajectory T in step 2. If the normal form of an element y with `(y) ≤ k is known, testing whether
y ∈ T (and storing it if it is not) then has a cost of O(Cλk ‖∆‖).
We initially compute the normal form of x at a cost ofO(Cλk2 ‖∆‖). Step 1 has a cost ofO(1). Step 3

and each pass through the while loops in step 2 and step 4 have a cost of O(Cλk ‖∆‖) by Theorem 4.4.
The number of passes through the while loops is bounded by T. Step 5 has a cost of O(T). Hence the
claim holds. �

Proposition 4.10. Let G be a Garside group of finite type with Garside element∆ and λ atoms, let x ∈ G,
and let v ∈ SC(x) be given as a product of simple elements or inverses of simple elements with at most
k factors. If the left and right normal forms of v are known, then, using the bounds from Notation 4.5, the
complexity of Algorithm 2 is O

(
Cλ2k ‖∆‖ (‖∆‖ +RM)

)
.

Proof. In step 1, we perform N ≤ M times the following operations: apply a cyclic sliding to an
element whose left and right normal forms are known, compute the left normal form and the right
normal form of the result and compare it to v; each of these has a cost of O(Cλk ‖∆‖) by Theorem 4.4.
Hence, the cost of step 1 is O(CλkM ‖∆‖).
Step 2 has a cost of O(λ); we store the setAv as a list and the set Atoms ⊆ {a1, . . . , aλ} as an array

of λ flags.
Steps 3(a) to (e) are executed λ times. Step 3(a) has a cost of O(1); the costs of the remaining steps

are as follows:
For step 3(b) note that at any time we have at 4 s 4 ρat 4 ∆, so s is simple. In particular,

sup(vs) − sup(v) ∈ {0, 1}. As the right normal form of v is known and s is simple, the right normal
form of vs can be computed at a cost of O(Cλk ‖∆‖) by Theorem 4.4. By Proposition 3.6, we can obtain
the element 1 ∨ vs∆− sup(v) from the right normal form of vs at a cost of O(1): it is the leftmost factor
in the right normal form if sup(vs) = sup(v)+1, and it is trivial if sup(vs) = sup(v). In the sameway,
we can obtain 1 ∨ (vs)−1∆inf(v) from the right normal form of (vs)−1. Observe that the right normal
form of (vs)−1 is related to the right normal form of vs: the leftmost factor in the right normal form
of (vs)−1 can be obtained from the rightmost non-∆ factor in the right normal form of vs by applying
the map ∂ or ∂−1 at most 2k + 1 times, that is, at a cost of O(Cλk ‖∆‖) by Theorem 4.4. As both
1 ∨ vs∆− sup(v) and 1 ∨ (vs)−1∆inf(v) are simple, so is their lcm. In particular, computing the lcm and
the finalmultiplication (which is a local sliding) each have a cost ofO(Cλ ‖∆‖) by Theorem4.4. Hence,
since the number of passes through the while loop is at most ‖∆‖ by Proposition 3.4, step 3(b) has a
cost of O(Cλk ‖∆‖2).
In step 3(c) the initial test at 4 p(v) has a cost of O(C). We can store the simple elements s(iN)

(i = 1, 2 . . .) in a sufficiently large hash table, using the hash function from Assumption 4.2. Testing
whether s(iN) has already occurred (and storing it if not) then has a cost of O(Cλ ‖∆‖). Since the left
and right normal forms of all elements in the sliding circuit of v are known from step 1, each pullback
can be computed at a cost of O(Cλk ‖∆‖) by Theorem 4.4. As the number of pullbacks which need to
be computed is bounded by 2RM by Corollary 4.8, the cost of step 3(c) hence is O(CλkRM ‖∆‖).

V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656 655

By the same arguments, step 3 (d) has a cost of O(CλkRM ‖ ∆ ‖), since each transport can be
computed at a cost of O(Cλk ‖∆ ‖) and the number of transports which need to be computed is
bounded by RM .
The test in the outer if statement in step 3 (e) has a cost ofO(CR), whereas the test in the if statement

in step 3 (e)i has a cost of O(Cλ), since testing whether ak ∈ Atoms has a cost of O(1). As the remaining
operations in step 3 (e)i have a cost of O(1), the cost of step 3 (e) is O(C(λ+ R)).
Hence, the complexity of Algorithm 2 is O(Cλ2k ‖∆‖ (‖∆‖ +RM)) as claimed. �

Theorem 4.11. Let G be a Garside group of finite type with Garside element∆ and λ atoms, and let x and y
be elements of G given as products of simple elements or inverses of simple elements with at most k factors.
Let T , M and R be the maxima of the bounds from Notation 4.5 for x and y, respectively.
The complexity of Algorithm 3 is O

(
Cλk ‖∆‖ ·

(
k+ T + |SC(x)|λ(‖∆‖ +RM)

))
.

Proof. Observe that `(z) ≤ k for all z ∈ SC(x). In particular, the (left) normal forms of two such
elements can be compared at a cost of O(Cλk ‖∆‖) by Theorem 4.4. Note further that a hash function
depending on all factors in the normal form can be computed at a cost of O(Ck), if the normal form is
known.Weuse a sufficiently large hash table, togetherwith this hash function, to store the setV . More
precisely, whenever a new element vs ∈ SC(x) is found, where s is an indecomposable conjugator and
v ∈ V , we store the following information in the hash table entry for vs: the left normal form and the
right normal form of vs, the indecomposable conjugator s, and the position of v in the hash table. If
the left normal form and the right normal form of vs are known, testing whether vs ∈ V , and storing
all required data if it is not, has a cost of O(Cλk ‖∆‖). The set V ′ is stored as a list (storing hash table
indices instead of actual elements), whence storing or retrieving an element of V ′ has a cost of O(1).
Observe that the conjugating elements cv for v ∈ V are implicit in the spanning tree structure for
SCG(x)with root x̃which is computed: for any v ∈ V , the conjugating element cv can be obtained by
tracing back the path to the root which is given by the indecomposable conjugators stored for every
entry in the hash table. This trace-back has a cost of O(|SC(x)|), since the length of the path to the root
is bounded by |SC(x)| and each step of the trace-back has a cost ofO(1). In particular, there is no actual
computation of cvs = cv · s in step 3(c)ii; at most c̃y is ever explicitly computed (in step 3(c)i).
Step 1 has a cost ofO(Cλk(k+T) ‖∆‖) by Proposition 4.9; this includes computing the left and right

normal forms of x̃ and ỹ. For step 3(c) note that, since the left normal form and the right normal form
of v are known, the left normal form and the right normal form of each conjugate vs can be computed
at a cost of O(Cλk ‖∆‖) by Theorem 4.4. Steps 3(a), 3 (d) and 4 have a cost of O(1). Steps 2, 3(c)ii, as
well as the test of the condition in step 3(c)i have a cost of O(Cλk ‖∆‖). By Proposition 4.10, Step 3(b)
has a cost of O(Cλ2k ‖∆‖ (‖∆‖ +RM)). The body of the while loop in step 3 is executed |SC(x)| times
and the body of the for loop in step 3(c) is executed at most λ times. The actual computation of the
conjugating element c1 · c̃y · c−12 in step 3(c)i has a cost of O(T +|SC(x)|), but is executed at most once.
Thus, the complexity of Algorithm 3 is

O
(
Cλk(k+ T) ‖∆‖

)
+ O

(
|SC(x)| · Cλ2k ‖∆‖ (‖∆‖ +RM)

)
+O

(
|SC(x)|λ · Cλk ‖∆‖

)
+ O

(
T + |SC(x)|

)
= O

(
Cλk ‖∆‖ ·

(
k+ T + |SC(x)|λ(‖∆‖ +RM)

))
as claimed. �

Remark 4.12. Unfortunately, the obvious bounds for T andM given in Remark 4.6 are exponential in
k. For the Artin braid groups Bn one has |[1,∆]| = n!, that is, the above bounds are also exponential
in n (or ‖∆‖) for this sequence of Garside groups, as is the bound for R given in Remark 4.6. Moreover,
no bound for |SC(x)| is currently known which is better than the obvious bound |SC(x)| ≤ |SSS(x)| ≤
|[1,∆]|k (cf. Remark 4.6); the latter again is exponential. None of these bounds adequately describes
the behaviour observed in computer experiments.
We conjecture that there are bounds for T , M and R which are polynomial in k and ‖∆‖. If the

elements of SC(x) are rigid, then one can choose R =‖∆‖ by (Gebhardt and González-Meneses, in

656 V. Gebhardt, J. González-Meneses / Journal of Symbolic Computation 45 (2010) 629–656

press, Proposition 8 and Corollary 11), and obviously M = 1. However, even in this case, no realistic
bound for T is known.
The situation for |SC(x)| is more complicated. It is shown in Birman et al. (2007b) that |USS(x)|

grows exponentially in n for periodic elements of the Artin braid groups Bn. By (Gebhardt and
González-Meneses, in press, Proposition 9), the same is true for |SC(x)|. Hence, a bound for |SC(x)|
which is polynomial in k and ‖∆ ‖ cannot be expected in general. However, it may be possible to
establish such a bound for certain classes of elements, for example rigid elements.2 For the situation
of Artin braid groups, an attempt to reduce the general case to the special case of rigid elements is
sketched in Birman et al. (2007a).
The problemof finding bounds for T ,M andRwhich are polynomial in k and ‖∆‖ and the problemof

understanding |SC(x)| correspond to open problems formulated in Birman et al. (2007a) in the context
of Artin braid groups for ultra summit sets and the cycling and decycling operations.

Acknowledgements

Both authors were partially supported by MTM2007-66929 and FEDER. This work was done
partially while the second author was visiting the Institute for Mathematical Sciences, National
University of Singapore in 2007. The visit was supported by the Institute.

References

Birman, J.S., Gebhardt, V., González-Meneses, J., 2007a. Conjugacy in Garside groups I: Cycling, powers and rigidity. Groups
Geom. Dyn. 1, 221–279.

Birman, J.S., Gebhardt, V., González-Meneses, J., 2007b. Conjugacy in Garside groups III: Periodic braids. J. Algebra 316, 746–776.
Birman, J.S., Ko, K.Y., Lee, S.J., 1998. A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139,
322–353.

Charney, R., 1992. Artin groups of finite type are biautomatic. Math. Ann. 292, 671–683.
Dehornoy, P., Paris, L., 1999. Gaussian groups and Garside groups, two generalizations of Artin groups. Proc. Lond. Math. Soc.
(3) 79, 569–604.

Dehornoy, P., 2002. Groupes de Garside. Ann. Sci. Ec. Norm. Super. (4) 35, 267–306.
ElRifai, E., Morton, H., 1994. Algorithms for positive braids. Q. J. Math. Oxf. Ser. (2) 45, 479–497.
Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P., 1992. Word Processing in Groups. Jones and
Bartlett Publishers, Boston.

Franco, N., González-Meneses, J., 2003. Conjugacy problem for braid groups and Garside groups. J. Algebra 266, 112–132.
Gebhardt, V., 2005. A new approach to the conjugacy problem in Garside groups. J. Algebra 292, 282–302.
Gebhardt, V, González-Meneses, J., 2009. The cyclic sliding operation in Garside groups. Math. Z., in press (doi:10.1007/s00209-
009-0502-2).

Knuth, D.E., 1998. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley, Reading,
Massachusetts.

Lee, E.-K., Lee, S.J., 2008. Abelian subgroups of Garside groups. Comm. Algebra 36, 1121–1139.
Michel, J., 1997. Garside and braid monoids and groups. In: The GAP Manual. (Chapter 82). Available at
http://www.math.jussieu.fr/~jmichel/htm/CHAP082.htm.

2 After this paperwas accepted, Prasolov [arXiv:0906.0076v1 [math.GT]] found a family of pseudo-Anosov, rigid braidswhose
sets of sliding circuits have exponential size with respect to the number of strands.

http://dx.doi.org/doi:10.1007/s00209-009-0502-2
http://dx.doi.org/doi:10.1007/s00209-009-0502-2
http://dx.doi.org/doi:10.1007/s00209-009-0502-2
http://www.math.jussieu.fr/~jmichel/htm/CHAP082.htm
arXiv:0906.0076v1
arXiv:0906.0076v1
arXiv:0906.0076v1

	Solving the conjugacy problem in Garside groups by cyclic sliding
	Introduction
	Basic facts about Garside groups
	Cyclic sliding
	The algorithm

	Cyclic sliding and the set of sliding circuits
	Description of the algorithm
	Algorithm 3
	Algorithm 1
	Algorithm 2

	Complexity of the algorithms
	Computing in Garside groups
	Context of the complexity analyses
	Basic assumptions
	Algorithms for computing in a generic Garside group

	Complexity of the new algorithms

	Acknowledgements
	References

